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CHAPTER I
INTRODUCTION

The wide-spread avallability of very large, rapid digital
computer systems has lead to the use of two fundamental methods of
modeling the electromagnetic characteristics of wire antennas on or
near three~dimensional metallic surfaces, One technique is known as
the method of moments whereby the interaction between electromagnetic
fields and their induced currents on the wire antenna as well as on all
parts of nearby conducting bodies, modeled as wire grids or flat plates,
is computed, Consequently, this approach, which computes the electro-
magnetic field from a wire antenna, is significantly limited by computer
storage and is only practical when the nearby conducting bodies are on
the order of a few wavelengths in size, An alternative approach is to
use the geometrical theory of diffraction (GTD) which requires that
more assumptions about the problem be made, such as the radiation
pattern generated by the antenna, but may be applled to bodles that are
arbitrarily large in an electrical sense, Much work has been done in
the recent past to combine the method of moments with the GTD in a
hybrid fashion so as to overcome the disadvantages of these techniques

when used separately,
The purpose of this thesis is two fold, First, the idea of a

hybrid technique of combining the method of moments with GTD is

1




entended to account for the mutual coupling between two monopole

antennas on a large circular cylinder by means of curved surface wave
diffraction, Second, the results of this technique are compared to
those of an analysls program used by the United States Air Force which
predicts electromagnetic coupling between alrcraft antemnas, The close
agreement between the results of these two different analysis techniques
serves to validate both computer programs,

The basic hybrid technique used in this paper was first described
in the literature by Thiele and Newhouse [1]. There, the technique was
applied to antennas on and near finite planar surfaces, Wedge diffrac-
tion theory was combined with the method of moments to account for the
finite planar surfaces, Ekelman [2], building on this previous work,
developed a hybrid technique for combining the moment method treatment
of wire antennas with the GTD to account for reflectlon of electro-
magnetic energy from the curved surface of an infinitely long cylinder
as well as diffraction from the ends of a finite cylinder, In the
present paper, curved surface diffraction theory is used to extend a
method of moments thin-wire analyses program to account for the propa-
gation of electromagnetic energy around the curved surface of an

infinitely long cylinder,
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CHAPTER II

METHOD OF MOMENTS THEORY

In this chapter, a fairly detailed description of the moment
method theory is presented which serves as a foundation for the hybtrid

technique presented in Chapter IV, Since this paper is a technique for

extending a moment method analysis program, an extensive discussion of

E e Y e oo ey v e rre e

the method of moments is considered appropriate,

The method of moments is a procedure for reducing an integral

B

equation of the form

(2-1) I(z*)K(z,2')dz'= ~E
over structure

to a system of simultaneous linear algebraic equations in terms of the
unknown current I(z'), It can be used to determine the current distri-
bution on an antenna, based on the physical properies of the antenna,
its configuration, and even possible environmental influences such as
the presence of a nearby conducting surface, Thus the traditional
problem in antenna theory of deriving the form of the current distri-
bution on the antenna 1s solved, Once the current is known, radiation
patterns and impedance can be determined in a straightforward manner,
The specific computer code used for the moment method portion of
the analysis is based on the thin-wire program written by Richmond [3],

It requires that all antennas and scatterers consist of thin wires or a
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grid of thin wires, This constraint allows one to make use of
Pocklington's integral equation to describe the relationship between an
electric field incident on the surface of a wire and the resulting
surface current induced on the wire, Detalls of the derivatlion of the
Pocklington integral equation are given by Stutzman and Thiele [4], The
general form of the Pocklington integral equation for a wire of length
L whose axls is parallel to the z axls is given by
(2-2) fL/ZI(z') [ﬁﬁ-&ﬂ * kzc(z,z')] 42 - - EX2)

-L/Z 3z J z
where

..jkr
G(z,2') = free space Green's function = EE;E-

r= [a.z + (z_z,)Z:}l/Z
a = wire radius
I(z') = filamentary line current on the axis of the wire equi-
valent to the 1ndqced surface current integrated around
the circumference of the wire
k = wave number of the medium = %?; w./,Z‘_e'
The parameters « and A are the angular frequency and wavelength
respectively, and H and £ are the permeability and permittivity of
the medium surrounding the wire,

Equation (2-2) is based on several key assumptions, First, the
wire is assumed to be "thin”; the wire radius, a, must be much less than
a wavelength, Therefore, it is assumed that only axially directed
currents (z-axis) are present. Secondly, the conductivity of the wire
is assumed to be infinite, and therefore, all induced current resides

on the surface of the wire, Since the radius of the wire is small,
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thils surface current, J(z',9), is uniform around the circumference of

the wire at any given point along the wire, Therefore, by symmetry
this surface current can be replaced by a line current which is located
on the axis of the wire, That is

2mr
(2-3) 1(z') = J(z’,8)ad8
0

It is important to note that eqn, (2-2) is in the form of eqn,
(2-1) so that eqn, (2-2) may be rewritten as

L/2
(2-4) I(z')K(z 2" )dz’ = - Ex(z)
-L/2

A physical interpretation of eqn, (2-4) is that an electric field
incident on the surface of the wire at point Zy along the wire axis,
will induce a surface current equivalent to a line current distribution
I(z') located on the axis of the wire over a length L as shown in

Fig, 2-1,

At this point, it is necessary to consider the boundary conditions
at the surface of the wire, From classical electromagnetic theory, at
the surface of a boundary on which there is an incident field, one must
account for a transmitted field and a scattered field as shown in
Fig., 2-2, The relationship between these three tangential flelds at the

brandarcy, £ = Z is

(2-5) &t +25=g"

However, a time varying flield cannot exist in a perfect conductor and
slnce the wire is assumed to be a perfect conductor, the boundary

condition ~n the tangential fields at the wire surface becomes

e




Fig, 2-1,

Equivalent axial wire current induced
by a incident field
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(2-6) =2+ =0

Eq . (2-5) can be rewritten as

(2-7) % =-3&

Finally, combining eqn, (2-6) with eqn, (2-4), ylelds

L/2
(2-8) I(z')K(zm,z')dz' = Es(zm)
-L/2

A physical interpretation of eqn., (2-8) is that a line current I(z')
located on the axis of a "wire" of length L produces a field E°(z) at an
observation point z on the surface of the "wire" as illustrated in
Fig, 2-3,

The next important step in the moment method concept is to divide
the wire of length L into N segments of length [Szn. This allows one
to write eqn, (2-4) as

L/2
(2-9) Ei( _ / ' ' : ' '
- - E, zm) = I(z )K(zmz')dz = Z In FnK(zmvz )dz
-L/2 n=1 Az

where the current function over the wire, I(z'), is now represented as
a series of current magnitudes at each segment n, (In)’ multiplied by a
function which describes the shape of the current for each n segment,

Fn is referred to in the literature as the expansion function, For

example, if one chose to make the current constant for each segment,
thereby forming a current fuaction I(z') along the wire consisting of a
series of rectangular pulses, Fn could be written as an orthogonal

pulse function, Therefore,

N
(2-10) 1(z') =) 1F,

n=i

PN PO
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where

(2-11) Fn=
0 otherwise

L]
{1 for z' in Zn
For illustrative purposes, let us choose the orthogonal pulse
function as the expansion function. This permits factoring constants

out of the integral and eqn, (2-9) can be rewritten as

L/2 N
(2-12) - Ei(zm) =[ ( Z IF.

-L/2  n=1

K(zm,z')dz' =

N
ZIn K(zm,zn')dz'
=i ‘Az ¢
Evaluating the integral on the right-hand side of egqn, (2-12),

(2-13) A K(zm,zn') dz' = C(zm,zn') Az
zn'
Thus, eqn, (2-12) can be written as

L/2 N
(2-14) = EZ(Zm) { (Z I F'n)l( (zm,z') dz' =

n
-L/2 n=1

N
Z In c (zm,zn') Az

n=1

Combining eqn., (2-14) with eqns. (2-9), (2-8), and (2-7)

L/2 N
(2-15) EZ(zm) =/ I(z')K(z,2')dz' = Z Inc(zm,zn') Az
-L/2 =1

a Iic(zm,zi)Az' + IZC(zm.zé) Az + ...

+ InC(zm,zn')Az' + eee + INC(zm,zN')Az' - - E:(zm)
10




The physical interpretation of eqn, (2-15) is as follows (4], The wire
has been divided into N segments of length [\z' with the current being
an unknown constant over each segment (due to our choice of the expan-
sion function F)., At the center of the ath segment, the sum of the
scattered fields from all of the N segments is set equal to the negative
of the incident field at the point Z, (eqa, 2-7)., The incident field is
a known field due to a source located on the wire (transmitting case) or
a source not located on the wire (receiving case),

By examining eqn, (2-15), one may notice that it resembles

Kirchhoff's network equations

N
(2-16) Z zm In = Vn. m= 1'2'3'¢1!N
n=1

with which most electrical engineers are more familiar (and comfortable),
where

(2-17) z_ = C(z,,2. ") Az

V.= - Ei(zm)

Since C(zm,zn')[Xz is based on the geometry of the wire and V_ 1is given
for all m, the values for In can be determined by n independent
equations, In addition, the oundary condition of eqn, (2-6) shail be
enforced at the center of each of the n segments, This is referred to

as point-matching which is a special case of more general moment

methods, Point matching results in the following system of equations,

(2-19) 1,0(zy,2,")D2" + 1,0(z ,2,") Azt +...+ LiC(zg02y') = -Eé(zi)

140020020 VD2 + 1,0(2502, ) Dt 4ok 1,C(zp0my") = By(3,)

Ilé(Zszl.)Az' + Izé(zNozzi'l)Az' .00t INé(zN,zN') - -EZ(ZN)
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which can be written in compact matrix notation as

(2-20) (1) lcz, )Dsz] = (- 5y(z)]

Making use of eqns, (2-17) and (2-18), eqn. (2-20) can be rewritten as:

(2-21) [1,) (2, ] =V,

Finally, the desired solution is obtained from eqn. (2-21) symbolically

ass

77 v

(222) (1) = (2, 17 [v,

In practice, one does not explicitly generate [Zn'n]-1. but instead may
solve eqn, (2-21) by using several fairly standard matrix algorithas
which utilize propertles of the Zlln matrix such as its diagonal
symmetry,

Another important concept of the method of moments is weighted
residuals. As the reader may recall, the point-matching method enforces
the boundary condition of eqn, (2-6) only at the midpoint of any seg-
ment on the wire, At points other than the midpoint, Z0 of a segment,
eqn, (2-6) becomes

1

(2-23) E Etan =

:an + R

where R 13 referred to as the residual, Thus, when R does not equal
zero, the boundary condition 1s viclated; the more severely this
boundary condition is violated, the greater will be the chance that the
final solution for the currents will be incorrect, By combining eqa,

(2-23) with eqns, (2-8) and (2-9)

N
\’—ﬂ

(2-23) R= ) I | FK(z,,2')dz’ + gt (7,)
=1 z, m

12
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and for orthogonal pulse expansion functions,

H
R = Z Inc(z'.zn')Az' + E;(zn) )

n=1
In the method of weighted residuals, a current function I(z') is chosen
so as to force the residual to zero in an average sense [4], This can

be mathematically expressed as

L/2
(2-24)J/- wm R dz = 0, m=1,2,3,...,N
-L/2

where wn is referred to as a weighting or testing function, Substituting

eqn, (2-23) into eqn, (2-24) gives, in general:

L/2 N L/2 4
(2-25)[ W Z I F‘nx(zn,z')dz'dz +[ wnEjz'( zm)dz =0 i
=1 Azll

-L/2 -L/2

and for the orthogonal rectangular expansion function,

L/2 N L/2
(2-26) [ ('Jn . Z InC(zm,zn')Az' k +[ LI E:(zm)dz = 0
- n-l -

L/2 L/2

The point-matching method of enforcing the bourdary condition at
segment midpoints amounts to using the dirac delta function

(2-27) W= 8(z - zm)

where h

fé(z - zm)dz -1

-0

and eqn. (2-26) reduces to the expressions in eqm. (2-15).

In the previous discussion, the orthogonal pulse and dirac delta

function were chosen for the expansion and the weighting function so as
13




to keep the mathematical expressions as simple as possible, However,
experience has shown that it is desirable to choose an expansion function
which will closely resemble the anticipated form of the current and to
use that same function as the weighting function, When the expansion

and weighting functions are chosen to be the same, the procedure is

referred to as Galerkin's method, Since the current distribution on

thin wire antennas 1s generally sinusoidal, it follows that the use of
sinusoidal expansion and weighting functions leads to high accuracy
with many fewer segments required than if the point-matching method is
used, Fewer segments results in fewer segment currents (In) and
therefore, a fewer number of independent equations to solve, This in
turn yields a significant savings in computer memory and execution time
required,

The thin-wire program written by Richmond 1s based on Galerkin's
method utilizing piecewise sinusoidal expansion and weighting functionms,
This is the method and computer program upon which this thesis is built
and which extends the class of problems which the computer program can

handle,

14
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CHAPTER III

GECMETRIC THEORY OF DIFFRACTION -

APPLICATION FOR A SMOOTH QONVEX SURFACE

| The purpose of this chapter is to introduce a high frequency

! method, the gzeometrical theory of diffraction (GTD), which is applicable
to bodies that are electrically large., This chapter will then discuss
the use of GTD to determine the propagation of electromagnetic energy
over the curved surface of a circular cylinder,

GTD views the propagation of electromagnetic energy as rays

(analogous to rays of light) which are subject to scattering and
diffraction from specific parts of a body such as flat surfaces, curved
surfaces, or sharp edges, Unlike the method of moments, GTD only
requires detailed information about the interacting body at points of

reflection and diffraction. Thus, unlike the method of moments, the

complexity and magnitude of the analysis does not increase as the

electrical size of the interacting dbody increases, However, (TD relies

on the use of more assumptions than the method of moments; primarily,
the ray-like behavior of electromagnetic energy, which tends to render
this method useless at very low frequencies,
The remainder of this chapter will focus on the diffraction

which occurs at the surface of a perfectly conducting circular cylinder,
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In conventional GTD analysis, the total field exterlor to a
curved surface will consist of incident, reflected, and diffracted
rays which may be divided into five separate regions as shown in
Fig, 3-1 (5], The shaded Region II in the vicinity of the shadow
boundary is a transition region which divides the 1it zone from the
shadow zone., Very close to the surface,Region II is subdivided into
Regions IV and VI in the shadow and 1it zone respectively., HRegion V
i1s a subdivision of Region III which is in the immediate vicinity of
the surface, More specifically, Regions IV and V are close to the
portion of the surface which is a caustic of the surface diffracted
rays3 whereas, Reglon II 1s in the vicinity of the point of grazing
incidence (Ql) which is a caustic of the reflected ray, Regions IV,
V and VI are therefore commonly referred to as the caustic or surface
boundary layer regilons, The curved surface diffraction hybrid analysis

developed in this paper will be exclusively for this surface boundary

layer,

The theory and equations which describe electromagnetic behavior
in the surface boundary layer of an arbitrary, perfectly-conducting
convex surface are explained by Pathak and Wang [6]. For the sake of
brevity, this chapter will simply present the equations used to predict
the electric field strength in the surface boundary layer from an

infinitesimal electric current (or current moment) which is also located

within the surface boundary layer, According to equ. (31) in Ref., [ 8], :
the electric field strength from a source at point P' which is observed

at point F (see Fig, 3-2) 1s given by the following expression:

16

PRI -




T T T IO

JBPUTTAD XaAUOD yjoouws ® Aq
FuTI933808 Y3 {M PajeIoOO0SSE SLOTFLT vue shex ayl “‘1-f °I1d

3INOZ MOQVHS NI 1NIOd a1314
INOZ LI7 NI LNIOd a13i4 =

1] "
o= Q.

30v4HUNsS

X3ANOD
N AvVY
a312vy4410
0 30v44NS
/
324N0S y I
K ,” INOZ MOQVHS
. \ vl\.VNu\.\l\..l\\
AVY 2Yvay o
LN3QIONI \

IS
3INOZ LT f\&\\\

17




(a) SIDE VIEW

(b) END VIEW

Fig. 3-2, Circular Cylinder Geometry
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(3-1) n );e * ?X' ﬁ
« ) .
i F (g QYI'YZ) - k F‘h(f oylvyz) + ks) FS(§ ,yl.y2,> +
1 o2 .EJ;<F‘ (§ 1yq0y,) - F (& ,yl,y2)>)
where %
H

2z = impedance of the medium = 7 = .//1.76
i k = wavenumber of the medium = 27/ = 40\//(.5 :

D ——

s = length of the surface ray geodeslc path from P* to P :

radius curvature of surface along the ray =

A
I

sin2 %

: § = angle of path with respect to the cylinder axis

a = cylinder radius

-3ks
ke Vv i
G(ks) = j2ms z, ‘,
’ £ = BS
/08
k 1
- [Ls] /3
2
-1
yp =@ kdy
2 _ -1
: Yy =m kdz

dy = height of source point, P', above cylinder surface
d., = height of observation point, P, above cylinder surface
T = Torsion Factor = cos & for a circular cylinder
D = spatial factor = 1 for a circular cylinder
Fh($ ,yi,yz) = "hard” type surface Fock function \.

Fs(§ .y,yz) = "soft" type surface Fock function

P, = strength of a current moment source at P’

19




i n' = unit outward normal vector at source point P’
f = unit outward normal vector at observation point P
For § # 0, the Fock function may be approximated by a Taylor series

o expansion as followsi
| (3-2)  F (£ ,7;.9,) =v(E) -8 67 v, (§) [y + 5]
(3-3)  F_(£,5,,9,) = u(§) + 3 [u(g) -2 ¢ u(e)] [v]+ 2]

According to Pathak and Wang [ 8], when § is large, say § >.6, a rapidly
converging residue series representation for the Fock functions may be

utilized as follows:

1/2 e= ,
T CL L Fad Y (znt et
=1

(3-5) wg) =T o g 32N G E
n=1

} (3-6) vl(g) = e /4 2/ & 3/2 Z e-j;Tn'

n=1 E
i (3-7) u'(g) = ej 77'/'4- 3/; ;1/2 Z (1 - j% ng)e-JET;l E
J n=1

WO oo T

where ‘l"n and 7' are zeros of the Airy function w2( Tn) and its

derivative wz'('Z' n)' respectively, which are tabulated in Ref, [8] and

repeated here for reference in Table 3-1, Tne Airy function, wz(’l'), is

expressed asi

(1-8) W, = ""]'."' 13_

3 2>/ dz exp (Tz - 3)
2

i‘ 20
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TABLE 3-1

[ Zeros 7f '12(1‘) and Wz'(’t‘) y
P -37/3 . o= /3
E T, = |7,] e and 7 ' = l7h | e

H I

: %] =N

: | 1 2,33811 1,01879 |
| 2 4,08795 3,24819 |
E 3 5.52056 4,82010 i
? 4 6.78661 6.16331 |
| 5 7. 94413 7.37218 |
6 9.02265 8, 48849 ;

7 10,0402 9.535k45 ;

8 11,0085 10,5277 ‘

9 11,9300 11,4751 |

10 12,8288 12,3848 :




where integration contour r12 goes from -oo to 0 along the line arg (z) =
+277/3 and from 0 to o along the real axis,

If, on the other hand, § 1s a small positive number less than or
equal to ,6, one may employ a small argument asymptotic expansion for

the Fock functions as follows:

o w1 LT 23 YE TG

(3-10) m(€) =1 -[-27_1:3577/“ £32, j-li§3+ige"j”/4g9/2- oo

N

(3-11) v(§) =1 +£2’fe5”/‘* g3/2 _ 5562 _zg RSPV

[\M)

(3-12) w(g) =2 /7 e S AT LI 2%+ T%fﬁ e-jﬂ/‘+€7/2_.

In the expansion equations, eqns. (3-4) thru (3-7), the first ten
terms in the summation may be used, For the small agreement asymptotic
expressions, eqns, (3-9) thru (3-12), the first three terms may be used
as shown in [ 8],

At first glance, the mathematlics for computing the observed
electric fleld strength may appear to be profuse and overwhelming,
However, by confining the convex surface to that of a circular cylinder,
the electric field strength of eqn, (3-1) becomes a function of the
location of the source and observation points P' and P; the location,
orientation, and radius of the circular cylinder; and the magnitude and

direction of the current moment at point P*, Ee‘




CHAPTER IV
THE HYBRID TECHNIQUE

The nyovrid technique seeks to combine the moment method with GTD

in an optimum manner so as to yleld an analysis procedure for antennas
near large electrical bodies which is both efficient and accurate,
relying on a minimum number of assumptions,

The basic technique to be described in this paper was first pre-
sented in the literature by Thiele and Newhouse [1]. The approach is to
first model the wire antennas using the moment method and then modify
the generalized impedance matrix to account for the effects of nearby
conducting bodles via GTD, This differs from other hybrid approaches
which use the moment method to extend GTD [ 7].

The basic moment method equation, eqn., (2-4),

L/2
(4-1) I(z')K(zm,z')dz' = - E;(zm)
-L/2

predicts the electric field strength E; at point Zn wilzsh 1z Ave
to the current function I(2z') over a wire of length L. Thru the use of
expansion functions, Fn' the wire can be divided intc N segments as

explained in Chapter II and so that the field at z, can be written asi

N
(4=2) E: In FnK(zm.zn')dz' » - Ei(zm)

n=1 [&z
n
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Applying a weighting function, W+ to ean, (4=2) in order to satisfy the

boundary conditions in an average sense over the length of the wire

results in

L/2 N L/2
(4-3) [ L I,/ FK(z ,2')dz'dz =/ LA -Ei(zm)dz
-L/2 o=t Azm -L/2

| Interchanging the order of integration and summation

N L/2 L/2
i (4=4) E: I?/— wmj[_ 1='nK(Zm'z')dz'dz i/r "' -E;(zm)dz
n=1 -L/2 Z&Zm ~L/2

Following the notation used by Thiele and Newhouse, eqn, (4-4) can be

expressed as

N
, 1
(4-5) 3 T QWLLU)> = <W, -shz)>
n=1

where L(Jn) represents a linear operator which relates the surface
expansion currents to the field at point m. Specifically, it can be
thought of as the magnitﬁde of the field at point m due to a unit test

current at point n, For wires in free space with no other conducting

bodies nearby,

(4-6) L(Jn) =J[- FnK(zm,z')dz'
Az

m

Referring to eqn, (2-16), eqn, (4-5) can be rewritten as

N
(4-7) E: Ifm ™ Va
- nwl

where




(4-#) zﬂm = <wm. L(Jn)>

= <" 3
(b=9) v = <, =B (z))>
Since the linear operator, L, relates the expansion currents Jn to their
electric fields, E, eqn. (4-8) could be expressed as

(8-10) z_ = W, (aB)>

where a is a complex scalar, If conducting bodies are in the vicinity |
of the wire antennas, eqn, (4-8) can be rewritten as

(#-11) zmn' = W L'(Jn)>

m'
or i
(4-12) z_ ' = <V, aB, + W,

where

=1
1]

field arriving at observation point m directly from Jn

%3]
]

field arriving at observation point indirectly from In due

to reflection or diffraction from a conducting body

I®
]

complex scalar for E1

b

complex scalar for Ez

Using proverties of linear functions,

(4-13) Zmn' = <'dm, a.E1> + <'/Im, E2> %
) . g Q
(u 14) Zmn Zmn + Zmn !
i

w“here !

Z = the "direct impedance” matrix term which relates the field
at segment m that arrives directly, toc the current on

segment n
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zfin = the “"delta impedance” matrix term which relates the field
at segment m that arrives indirectly, due to diffraction or
reflection, to the current on segment n
zmn' = the net impedance matrix term
The hybrld moment method procedure can thus be summarized by the
following steps,
1, Completely describe the geometry of the problem; location and
size of all wire segments and any conducting bodies in the viclnity,
2, Determine the net impedance matrix terms, Zmn"

(a) Determine the average field at segment m, if any, which
arrives at directly from a test current of one amp at
segment n (Zmn)'

(b) Determine the field at segment m, if any, which arrives
indirectly, due to reflection by a conducting body, from
a test current of one amp at segment n (Z:n)'

(¢) Determine the field at segment m, if any, which arrives
indirectly, due to diffraction by a conducting body, from
a test current of one amp at segment n (Z:n).

(d) For each palr of wire segments n and m, sum the direct
and delta impedance matrix terms to obtain the net
impedance matrix term for that wire segment pair,

3. Define a field source which will generate an incident,
average fleld, V , directly on each segment m, (For transmitting and
receiving wire antenna problems, source field [Vn] would be non-zero

only for the transmitting antenna segments,)
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4, Solve the matrix equation [In] = [Zmn]"l [Vm] to obtain the
current tror cvery segment of all the wire antennas,

¢, Use standard, simple electromagnetic relationships to deter-
mine such parameters as the antenna input impedance, radiated power,
antenna efficlency, field patterns, mutual coupling between two wire
antennas, etc., based on the now known current distribution on the wire
antennas,

In order to implement this algorithm in a computer program which
would account for cylindrical surface diffraction, the flrst step was
to obtain an efficient moment method program, Richmond’s thin wire
moment method program [8], incorporates the Galerkin method by using
plecewise sinusoidal functions for both the current expansion and the
welghting functions. This allows the program to converge using roughly
an order of magnitude fewer wire segments than if a pulse basis function

point-matching moment method code, solving the same problem, 1s used,

Furthermore, tkelman had augmented Richmond's code, giving it the

capability to deal with reflections from the curved surface of a cylinder

as well as diffraction from the sharp edges of a truncated cylinder, by
means of using GTD relationships, Therefore, the program was already a
hybrid moment method code., In both the basic Richmond code and
Tkelman's subroutines, the impedance matrix terms, Zmn' and delta
impedance matrix terms, Zin' are determined by placing test currents on
segment n and determining the resultant field at segment n., The test
current distribution (expansion function) 1is as shown in Fig. 4-1 witn
n-1 modal currents for each n segment antenna. Thus, a four segment

antenna would have three modal currents with the end segments having

one modal current each and the other segments each having two modal
27
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Fig, 4-1, Modal current distribution on a
L segment wire dipole antenna

Fig., 4-2, Source and observation segment interaction
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currents, Tne amplitude of each modal current is taken to be one amp,

A typical segment n, which is not at either end of the dipole antenma,
#ill tnerefore contaln two modal currents as shown in Fis, <=2, The
program then determines the tangent field observed at various points P
Wwhich 1lie on segment m, This field at P is the vector sum of the field
contribution from modal current I (ET1) and modal current II (ET2),
Numerical integration of the field contributions 1s performed, resulting
in the impedance matrix term or delta impedance matrix term for segments
m and n,

For computing the surface diffraction impedance matrix terms,
Z:ﬁ, a test is performed to determine if the surface of the cylinder
obstructs the "view" between the test segment n and the observation
segment m, If it does not, such as when segments m and n are on the
same monopole antenna, the tangentlal flelds are set to zero, OQOther-
wise the tangent field components generated by modal currents I and II
on segment n are calculated by subroutines which incorporate the GTD
equations as discussed in Chapter III, However, in this case, the modal
currents are consldered to be located at the midpoint of segment n where
the magniiude of each modal current, Se , is found as the average value
of the current distribution over the wire segment for each modal currert,
It may be ccmputed in the following manner, As Fig, (4-3) shows, the
eight segment antenna is modeled such that nearly one-quarter wavelength
of the sinusoidal antenna current is assumed to be distributed over the
seven radiating segments, To obtain a more resonant monopole (almost
no reactance in the antenna input impedance), the total length of these

seven segments was chosen to be ,2428 wavelengths, Working in units of

radians where one wavelength is equazlé to 2777 radians, the length of the
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monopoie is equal to 1,526 radians, Therefore, each segment is one-

seventh of this length or .2179 radians long on which reside piecs~
wise sinusoidal currents as shown in Fig, 44, These segment current
distributions are normalized such that their maximum value on the

segment is one, In general, the segment current distribution can be

described as
(4-15) 1(¥) = -——-1————2,,L sin *
sin (=) f
n %
where

L = length of the antenna in wavelengths
n = number of radiating equal-length segments in the antenna
By using standard integration techniques, the average value of this

current distribution may be determined as follows;

277
(2

(4-16) 1, = 1 sin ¥4 %

v 27TL 27TL
(2L sin (B2hy J

Performing the integration ylelds:

1 - cos (277'1.)
(4-17) 1, = T o (O
n n

Thus, for n = 7 and L = ,b2428, Iav = , 502 amps, This, in turn, is the
value that was used for the magnitude of the current moment, Ee , for
the surface diffraction equations, The source and observation segment
interaction for surface diffraction is illustrated in Fig, 4-5, The

program assumes that the currents on segment n will launch two surface

tield waves; one which will travel clockwise around the cylinder, the

other counterclockwise, Both flelds will arrive normal to the surface
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i of the cylinder at segment m, be added together as vectors, and dotted
with the direction of the mth segment on the receiving antenna to yleld
the total tangential field, As eqn, (3~1) requires, the program also

| dots the a direction of the source segment modal currents on segment n
with the outward normal unit vector of the cylinder, For monopoles

‘ normal to the cylinder surface, these dot products are all unity, The
tangential fields, ET1 and ET2, are then integrated in the same manner

as for the subroutines which determine the impedance matrix terms, Zmn’ g

or reflection delta impedance matrix terms, Zin
|

*
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CHAPTER V

COMPARISON OF RESULTS

WITH AN ALTERNATIVE ANALYSIS PROGRAM

, This chapter will discuss an alternative electromagnetic analysis

program which is promoted by the United States Air Force (USAF) and will
show how well the results of the USAF analysis program agrees with the
hybrid method of moments (MOM) program for a variety of cylinder radii
and relative antenna locatlons,

The Intrasystem Electromagnetic Compatibility Analysis Program
(IEMCAP) is a USA Standard FORTRAN program for computer-aided imple-
mentation of electromagnetic compatibility (EMC) at all stages of an
Alr Force system's 1life cycle, applicable to aircraft, space/missile,

and ground-based systems [9],

The antenna-to-antenna coupling model, one of the many coupling

modes between equipment subsystems which IZMCAP can analyze, is
basically a geometric optics (GO) program which determines the severity
of interference that a transmitting antenna may unintentionally produce

in other antenna receiving systems on the same alrcraft due to such

phenomena as the generation of higher order harmonics, To use the
antenna-to-antenna portion of IEMCAP, one begins by modeling the
alrcraft as a conducting cylinder with a cone attached at one end,

Wings, modeled as infinitely-thin flat plates, can be attached to the
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s1des of the cylinder, Next, antennas are described by thelr zain
patterns, supplied by the User, Up to three different guantized

levels of antenna gain may be specifled for the spherical sectors wnich
enclose the antenna, The antennas are then positioned and oriented at
their respective locations on the cylinder that represents the aircraft
fuselage, The power, frequency range, signal modulation character-
istics, and relative harmonic levels of transmitters are enumerated oy
the User as well as the antennas to which the transmitters are connected,
Similarly, the power sensitivity threshold, frequency range, and out-
of-band rejection of the receivers, as well as their antennas, are
specified by the User, IEMCAP will then determine the magnitude of
power delivered to a specific receiving antenna from one of the trans-
mitting antennas, based on the relative position of the antennas on the
modeled aircraft, the appropriate gains of the antennas, and the
frequency of transmission, The magnitude of the received power is then
compared to the receiver's power sensitivity for that frequency and

if it exceeds that sensitivity, a potential electromagnetic inference
(EMI) problem is predicted by IEMCAP,

In determining the magnitude of the power coupled to the receiving
antenna, IZHCAP takes into consideration the distance between the
antennas (free-space loss), diffraction around the fuselage (fuselace
shading factor), and any diffraction off the edge of the wing which nay
lle in the direct path between the two antennas (wing diffraction
factor), These three factors, all in units of decibels, are added
together algebraically with the antenna gains (also in decibels) to
arrive at the power coupling factor between the two antennas for a ziven

frequency.
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The fuselage shading factor used by IEMCAP is based on work by
- Hasserjlan and Ishimaru (10], In their analysis, a function is derivec

| which relates the propagation around an infinite conducting cylinder to

| that over a flat plane, This function is approximated by IEMCAP as
follows [11];

, A

| (5-1) sF_ = m

where

w2/
(5-2) A= fp 8 2

5.478 x 10"3 for A < 26
7 = {3340 x 107 for & = 26

,5083 for A < 26
€ =1{.5621 for A > 26
and
SF = fuselage (cylindrical) shading factor (dB)

radius of cylinder (meters) i

o
o]
il

¢ o]
it

angle around cylinder of propagation path (radians)

b )
[

wavelength (meters)
Dc = distance of the cylindrical segment of propagation path iz

It is possible to compare the performance of the hybrid moment
method against that of IEMCAP in computing cylindrical diffraction loss,
As part of the standard output, IEMCAP will print the transfer loss

between two antennas in units of decibels (dB), This corresponding

number can be obtained from the hybrid moment method program in the

following manner, The input power to th~ transmitting antenna can oe

determined as

16




(5-3) P =Rea1[‘vgng*]

where

P, = transmitting antenna input power (watts)

V _ = complex voltage at the antenna terminals from a voltage

generator (volts)

I = complex conjugate of the complex current at the antenna

terminals (amps)

The power which is recelved at the other antenna is found by
observing the complex current induced in a matched load impedance of
36.2 + 3,0104 ohms (input or terminal impedance of a "near" resonant
one-quarter wavelength monopole) connected across its terminals and

applying the equation

(54) B, =Reallr T "2z ]
where
Fout = power developed at the receiving antenna terminals (watts)
Hr = complex current at the antenna terminals (volts)

T*= complex conjugate current at the antenna terminals (amps)
ZL = impedance connected across the antenna terminals (ohms) =
36,2 + 3,0104

Finally, the transfer loss or power coupling factor may be computed as

D
_ " out
(5-5)  PCF = 10, log, | 2=|
in
where
PCF = power coupling factor (decibels)
Pout = power at receiving antenna (watts)

Pin = power input to transmitting antenna
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The power coupling factor includes the gain of both the transmitiing
and recelving antennas, In order to eliminate deviation between the
result: of the programs due to different values of antenna gains, the
effective maximum broadside gain of the monopole modeled by the MOM
program was determined in the followlng manner, A test case was per-
formed in which the transmitting and receiving antennas were located
parallel to each other on the surface of a ten wavelength radius cylinder
and separated by a distance of exactly ten wavelengths as shown in

Fig., S~1. These wire monopole antennas had a wire radius of ,00005
wavelengths and were exactly.2428 wavelengths long, The total power
coupling between the transmitiing antenna and the receiving antenna was
determined by using the procedure previously described and found to be
-32.65 dB, Next, the far-field free space loss was computed using the

familiar expressions

(5-6) PFSL = 10, log

1

m”%z)
where

FSL = free-space loss (dB)

D = distance between antennas (wavelengths)

Using a value of 10 for D, the value of FSL is approximately -41,98 48,
The difference between these two values is accounted for by the effective
galn of each of the two antennas (assumed to be equal), Therefars, the

antenna zailn is found as

(5-7)  Gain = 232:83 51‘“1-9‘3)

or

(5-8) ain = 4,665 dB
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As a side point, this is very close to the ideal maximum broadside gailn
of 5,16 dB for a resonant one-quarter wavelength monopole antenna on an
infinite flat surface, The gain of 4,665 dB derived by the MOM code for
the antenna on a curved surface was used as input data for the IEMCAP
code for the one-quarter wavelength monopole antennas,

The next step was %o chocse an antenna configuration for both
programs, For the first configuration, a transmitting monovole antenna
was fixed on the surface of a circular cylinder while the recelving
monopole antenna was positioned in the plane of the transmitting antenna
perpendicular to the cylinder axis, at various angular separations from
the transmitting antenna as shown in Fig, 5-2, The radius of the
cylinder was initlally chosen to be ten wavelengths, Thls corresponds
to the fuselage of a cargo alrcraft such as a C-141 or a C-5A at around
one glgahertz (GHz), close to the frequencles used by airborne military
navigation equipment,

Fig, 5-3 illustrates the excellent agreement between these two
radically different approaches for calculating the power coupling factor
between two antennas due to cylindrical surface diffraction., Here,
values were computed at ten degree intervals, The only significant
difference in results between the two methods i1s when the two antennas
are separated by large angles, At these angular separations, both tne
short and long path diffracted field contributions are similar in
magnitude at the receiving antenna, However the difference in the
phase angle of the arriving fields results in a reinforcement or
cancellation effect., By plotting only the values between 160 and 130

degrees, this phenomenon can be more clearly seen as Fig, 54 shows.
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The MOM code data in Fig, 5-4 1s very similar to a standing wave pattern
on a lossy transmission line in the vicinity of a discontinuity. The
distance between null points is one-half wavelength, One otserves that
very close to 180 degrees, the total power received by the second
antenna can vary by almost as much as 20 decibels for a displacement of
one-quarter wavelength!

Next, the radius of the cylinder was varied, As an upper limit,
a cylindrical radius of 150 wavelengths was selected. This corresponds
to the fuselage of a C-5A cargo aircraft (30 foot diameter) at a
frequency of approximately 10 GHz which 1s near the operating frequen-
cles of airborne radar, precision approach systems, and electronic
warfare (EW) equipment, Fig, 5-5 shows very close agreement between
the two approaches for all angular separations less than 130 degrees,
As in Fig, 5-3, the MOM data oscillates for angular separations larger
than 160 degrees, However, since the separation between the nulls is
less than.2 degrees, these oscillations appear as a shaded area.

Figs, 5-6, 5-7, and 5-8 show that the two programs generally yield
the same answers for smaller cylinders with a 5, 3, or 1 wavelength
radius, Again, there is some deviation for very large angular
sevarations due to the constructive/destructive reinforcement discussed
previously, There is also somewhat of a deviation for very small
angular separations, This 1s most likely due to the geometry situation
of the antennas and cylinder used by the hybrid MOM code, For these
small angles, the electric field is no longer propagating through the
surface boundary layer region described in Chapter III. Rather, source

points on the transmitting antenna, as well as the observation points

4dy
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on the receiving antenna, may more properly be considered as points

well off the cylinder surface, especlally for the antenna segments

farthest away from the cylinder surface, Therefore, a different set of

2 surface diffraction equations should be used which permits the source

and/or observation point to be outside the surface boundary layer (61,
A case which lends additional support to this deduction is that of

the five-eigths wavelength monopole, The length of the one-quarter

wavelength monopole was extended to .625 wavelengths, The matched load
impedance was now found to be 73,5 + j400,7 ohms, The antenna effective .
gains were computed by the MOM code as before and found to be 8,385 dB,
nearly equal to the ldeal maximum broadside gain of 8,7 dB, This value

of 8,385 4B was used as the gain of the antennas in the IEMCAP code,

{ Fig, 5-9 illustrates the results of the two programs, Here the

| deviation between the two codes is becoming significant, With the
antennas more than one-quarter wavelength above the cylinder <sncface, many

more source and reception points on the antennas are no longer in the

surface boundary layer reglion, Thus, as for one-quarter wavelength
monopoles on smaller radii cylinders, the MOM code appears to be less
accurate,

A second type of orientation of the antennas on the fuselage was
used to introduce torsion in the paths between the antennas, The
antennas now are no longer in the same plane perpendicular to tne {
cylinder axis as before, They are separated by both an angular

displacement as well as a displacement along the cylinder axis wnicn ;

lies on the z axis,
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Specifically, two cases of constant angular displacements of 30
and 180 degrees were chosen where the power courlins factor was zomputed
and plotted as a function of linear separation parallel to the cylinder
axis, These orientations are illustrated in Fig, 5-10.

The results of the power coupling factors computed by both the
MOM code and the IEMCAP code for angular separations of 9C degrees is
graphed in Fig, 5-11, The agreement between these two methods is
amazingly close for all four linear separations computed,

Fig, 5-12 compares the results of the TEMCAP to the MOM code when
the angular separation is 180 degrees, Although the two codes troduce
answers that differ by approximately 6 dB, this difference is most likely
due to phase information that the MOM code accounts for which the
IEMCAP code does not (as explained in detaill previously in this chapter),
However, both codes predict nearly equal changes in the power coupling
factor for corresponding changes in linear displacement along the
cylinder axis, Furthermore, for the 180 degree angular displacement
case, both codes show that the power coupling factor will actually
increase as linear displacement between the two antennas is increased,

Based on these comparisons between the MOM code and the IEMCAP
code in their abllity to determine the loss in transmitted power due to
cylindrical surface diffraction, several conclusions may be drawn, For
intermediate angular separations (60 to 120 degrees), the deviation in
results between the two codes is less than one decibel, This is a strong
indication that both results are correct, For larger angular separations
(120° to 130°) deviation between the codes can be explalned by the

reinforcement/cancellation effects due to phase information which is

accounted for by the MOM code but not by IEMCAP, VYet the IENCAP code
51

]
4

FQRICY_ FEPUTWINREC VNI




TRANSMITTING

L/ANTENNA
Ay P2 \
\
\ P
\ ! \
\ | \
! ] ‘
1 L
+ - - — —— -
| g
,’ ‘\ | RECEIVING
I \ ! ANTENNA
/ /

N

CASE I: ¢ =90° SEPARATION

TRANSMITTING
" ANTENNA

/o /ﬁ\
\
/ \ / \
! A / \
, f \ I |
| L L
‘ ! \ j
\ / H
\ ! \ /
\ \
T"\
AZ __" RECEIVING

ANTENNA
CASE I : ¢ =180° SEPARATION

Fig, 5-10, Coupling paths with torsion

o

[




w
/

o

o

<

w
|

ACTOR (OB
-68.00

f.‘

~-76.00 —72.00

L

POWER COUPLING

o

(CEGREES) = 90.
REQIUS (») = 10.0
—— [EMCAP CODE

— HYBRID MOM COOE

~830.C00

2
: T T T 1T R T 7 R EERA 1 1 1T T 171
10° o to? 10°
RATIGH SLONG CYLINDER AXIS (WARVELENGTHS)

Fig, 5-11, Power coupling factor between two 1/4 wavelength

monopoles on a cylinder of radius 10 wavelengths,
at a constant angular separation of 90 degrees

53




N

[ PR PR Y

[}

—
'

(LB)

FraCTOR
-58. U0

-96.060

i

POWER COUPLING
104.60

|

G—""
o
o
~
T'\LDG T L\G T xliﬁHL P T llﬁ;.qlc:
SPARATICN QLONG CYLINDER QK'S (WRVEZLENGTHS

?ig, 5-12, Power coupling factor between two 1/4 wavelength
monopoles on a cylinder of radius 10 wavelengths
at a constant angular separation of 180 degrees

— o — P




values do agree with the average values of the standing-wave tyve

ratterns of the MOM code results. Thus, the MOM code results appear to
be correct for cylindrical surface diffraction involving large angles,
In addition, there is also good agreement between the two codes for
cases of linear displacement along the axls of the cylinder where
torsion is introduced into the path between the transmitting and
receiving antennas,

However, deviation between results of the two codes is more severe
for small angular separations (less than 60 degrees) between one-quarter
wavelength monopoles on small cylinders with radii on the order of one
wavelength, There 1s also a disturbing amount of disparity between the
results of the MOM and IEMCAP codes when a longer five-eights wave-
length monopole is used, It appears that the MOM code fails (gracefully)
when source points are much more than one-quarter wavelength above the
cylinder surface or when very little of the propagation path between
the antennas resides in the surface boundary region, as for small
angular separations on small radii cylinders, To reduce the effect of
these problems, equations which account for curved surface diffraction
from source and observation points outside the surface boundary layer,
such as described by Pathak, Burnside, and Marhefka [6], should be

considered,
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APPENDIX A

DESCRIPTION OF SUBROUTINES

The purpose of this appendix i= to furnish a brief desecription of

the subroutines which were added to Richmond's thin-wire program in
order to account for surface wave diffraction around a circular cylinder,
For a description of the subroutines used in the original thin-wire
program or the subroutines developed by Zkelman which account for
reflection from the surface of the cylinder, the reader is advised to
consult References [ 3] or [2] respectively.

Subroutine SGANTC, listed in Fig, A-1, is called in place of

SGANT, Subroutine SGANTC is the same as subroutine SGANT, described in
Reference [ 3], with two exceptions, First of all, subroutine GGSCYL is

called instead of GGS, Secondly, the statements which modify the mutual

impedance matrix C to account for lumped impedances contained in the ’
ZLD matrix, have been modified to accommodate the C matrix, stored as a

two-dimension array instead of the original single-dimension array used

in Richmond's program,
Subroutine GGSCYL, listed in Fig, A-2, is similar to subroutine ‘
GGS, of the original thin-wire program, described in Reference [ 3 ].

However, GGSCYL will test if the surface of the cylinder obstructs the

line of sight between the end points of the source and observation

segments, This 1s done by calling subroutine VISIBLE whose parameters
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SUBROQUTINE SGANIC(ICJ,IA,IB,INM,INT,ISC,I11.12,13.JA,JB ,MD ,N,ND NM,
2 NP ,AM,BM,.C.CGD.CMM.D.EP2,EP3,ETA,FHZ,GAM,SGD.
3 X.¢.Z,21D,2ZS.12NM,RADM)
®* staNiC [S THE SAME AS SGANT EXCEPT THAT GGSCYL IS CALLED INSTEAD

C ™ * OF GuS.

12

25

3g

COMPLEX ZG,ZH,ZS.EGD,GD,CGDS,SGDS,S$GDT,B881

COMi~ EX P11, PL2,P21,P22,Q11,Q12,Q21,Q22,EP2.°P,ETA,GAM, EP3

COMPLEX EPSILA,CWEA.BETA,ZARG

COMFLEX P(2,2),Q(2,2),CGDUINM),SGD(TNM),CCICI,ICI),ZLDCI2NM)
DIMENSION XONP) Y(NP). Z(NP) ,DCINM)  TACINM) [ IBCINM) MD.INM &)
DIMENZION J1CICI),12¢ICI ), I3CICI) JALICI ) JBLICI) NDCTINMS  ISCCINM)
DATA E0,TP.UQ/3.854E-12,6.28318,1.2566E-6/

COAMAT( 3%, *AM = * E1@.3,3X,“DMAX = » E10.3,4¢,"DMIN = * F1@.3)
EP=[P3

ICC=(N“N+N)/2

D t1 J=1,N

Ly 12 1=1.N

Ci,3)=(@..4.)

TONTINUE

2u={.0,.0)

IF(CMM.LE.@.)GO TO 12
CMEGA=TP*FHZ
EPSILA=CMPLX(ED, -CMM*1 .ES/OMEGA)
CWIA={.2,1.)*OMEGA*EPSTLA
EETA=OMEGA*SQRTL UM I *CSORT(EPSILA-EP)
CARG=LETA*AM

CALL CBE3(ZARG.B®1)
Z25=BeTA*BF1/CWEA
ZH=Z5/{ TP *AM*GAM)

DMIN=1.E39

OMAX= . @

DO 23 J=1,NM

K=1A1J)

L=18(J)
DeJ)=SARTCUIX(K)I=X{L I **2+(Y(K)-Y(L ))I**2+(2Z(K)-Z(L})**2)
IF(D(J).LT.DMINDMIN=0(J)
IFID(J).GT.DMAX IDMAX=D(J)
EGD=CEXP{GAM*D(J))
CGD(J)=C(EGD+1./EGD)/2.

SGD J))1=(EGD-1./EGD)/2.
IF(OMIN.LT.2.*AMYGO TO 2S5
IF(CABS(GAM*AM) . GT.¥.96)G0O TO 25
IF(CABS(CAM*DMAX).GT.3.)G0 TO 25
IF(AM.GT.#.)G0 TO 38

N=§

WRITZ(6,2)AM,DMAX ,DMIN

Rt 7 ”N

6D 239 K=1,NM

NDK = 4D(K)

FA=TA(K)

K3=73(K}

DIEEIVEE ]

CE35-CGDK)

SGDS=SGD(K)

DO 244 L=1.NM

NDL=NDCL)

La=T1AcCL)

LB i3l

DL=0il )

DL SGDUL)Y

NTI =y

DL 2am 11=1_NDX

Fig, A-1, Subroutine SGANTC

57




36
A

46
52

89

82

83

98

129

1=MDtE 11
MM=(]1-1)*N-(]1*]1-1)/2
Fi=1.
IF1K3.EQ. ]
IF(KB.EQ.1
I5=1

GO TN 44
IF(KA.EQ.I3(I) FI=-1, .
1§=2

DO 246 JJ=1,.NDL

J=MD(L,J3J)

MMM =MM+J ‘
IFCI.GT.J)GO TO 288 e
FJ=1.

2(1))60 10 36 :
LIV I=~1,

F(Ls. EQ.12(J1))GO0 TO 46
[F(L3 . EQ.T1{(J))FJI=-1.

JS=1

GO 10 54
IFVLAEQ.I3(INIFI=~1,
18=2

iFINIL.NE.Z)GO TO 168
NIL=1

IF(K.EQ.L)GO TO 128
INO={LA-KA)*(LB-KA}*({LA-KB)*(LB~-KB)
IFCIND.EQ.F)GO TO 8@
SEGMZNTS K AND L SHARE NO POINTS
CALL GGSCYL(X(KA),Y{KA),Z(KA) X{KB),Y(KB},Z(KB),X(LA),Y(LA),Z(LA),
2 X(.B),Y(LB}),Z(LB),RADM,AM,DK,CGDS,SGDS,DL,SGDT, INT,ETA,GAM
3,741, 1),P01,25 PE2,1),P(2,2))
50 7O 168
SEGMINTS K AND L SHARE ONE POINT (THEY INTERSECT)
Kg=g
IM=¢3
JC=KA
KF =1
[ND=i¥B~-LA)Y*(KB-LB}
TFCIND.NE.@)GO TO 82
JC=¥X3
KF=-1
IM=HA
KG=3 b
5=3
JIP=LA
LFs-1
IFAL3.EQ.JICIGD TO 83
JP=i3
LF=1
Ls=4
SGN=KF*{F
CPSI=C{X{IPI-X(JIC)I*(X(IM)-X(ICII+{Y{JIP}-Y(ICH)*(Y(IM)-Y(JC))
2+(Z0JPY-Z(JCH)I*(Z(IM)I-Z(IC ) )/ (DK*DL)
CALL GGMM(.#,.DK,.d,.DL,AM,CGDS,SGDS,SGDY.CPSI, ETA,GAM
2.001,1),Q¢1,2),Q02,1),0(2,2))
0V 93 KK=1,2
KP=TABS{kK-KG)
DO 93 LL=1,2
LP=1ABS(LL-LG)
P.KF.LP)}=SGN*Q‘KK,LL)
CONT I NUE
<0 10 168
K=l (SELF REACTJON OF SEGMENT K)
mi=t.9,.8)

Fig, A-1, (Continued)




) ure=(.4,.8)
IF{CMM _LE . &.)G0 TO 154
£.0=GAM* DK,
SG=ZA/(SGDS**2)
J11=26*{SGDS*CGDS-GD )/ 2.
ZG=ZA/(SGDS**2;
Ql11=Z2G*(SGDS*CGOS-GD /2.

\ Q12=2G*{GD*CGDS-SGDS /2.

158 13CK=1SC(K)

Pll=(.9,.8)
Pl12=v.@,.0)

F I3CK.EQ.#)GO TQ 185
1FoBMLLE AMIGO TO 155
CALL DSHELL (AM,BM,DK,CGDS.SGDS,EP2,EP,ETA,GAM,P11,P12)}

155 L11=F1+Q11

G12-P212+Q12

CALL GGMM¢ .@,DK,.8,DF, AM,CGDS,S6GDS,S5GDS, 1.
2.ETA.GAM,P11,P12,P21.P22)
Qli=rli+Qll
d172="12+Q12
Pr1.1)=Ql1!
Pel,2v=2Q12
PC2,11Y=Ql12
Sv2.21Y=Q11
IFtKA.NE.LAYGD TO 168
G0 1D 168
169 P(1,1)=-Q12
Pr1,2)=-Q11
Pri 1)==Q11
P(2.2;=~Q12
168 CoI,J)=C(I,J)+FI*FJ*P(15,08)
IFLTLNELONCH),1)=Ct1,d)
209 COUNTINUE
C ADD THE LUMPED IMPEDANCES TO THE C MATRIX.
15EG=1
381 IF{ZLDCISEG) . NEL(P. . 0.1) GO TO 3P2
IFCISEG.EQ.I2NM) GO TO 358
393 ISEv--1SEG + 1
G0 Y0 341
382 IMODI =}
3907 IFUISEG.GT.INM; GO TO 304
IF(I2(IMODLE).EQ.IACISEG)) GO TO 395
396 IMODE=IMOUE + 1
IFCIMODE.GT.N)Y GO TO 368
GO TO 3847
394 i:EG=ISEG ~ INM
I 1Z2(IMODE).EQ.IB(ISEG)) GO TO 385
1SEG=T3EG 4 INM
GO TO 308¢
395 T (1M2IDFE,IMODE)=C(IMODE,IMODE) + ZLD(ISEG)
GO TN 323
354 CONTINUE
; RETURN
. 360 WR1TZ(6,681) I3EG,ZLD(ISEG)
601 FORMAT(IX,*FATAL ERROR: UNABLE TO FIND DIPOLE MODE TERMINALS*/
1 * “OR LUMPED IMPEDANCE ZLD(*,I3.*) = * 2E15.6)
N=o)
af) T 3547
9]

Fig. A-1, (Continued)
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SUBRJUTINE GGSCYL(XA,YA,ZA,XB,YB,ZB,X1,Y1,Z1,X2,¥2,Z2,RADM, AM
2.0S,CGDS,SGDS ., DT, SGDY,iNT,ETA,GAM,?11,P12,P21,P22)

i COMPLEX P11,P12.P21.P22,:JA,EUB.EJ},EJ2,ETA,GAM,C1,C2.CST

COMPLEX EGD.CGDS,SGDS.SGOT,ERY,ER2,ET1,ET2

COMPLEX ERI1,ER12,ER21,ER22

COMPLEX ETI1,ETI2,ET21,ET22

LOGICAL AVIS,BVIS,VIS

DATA FP/12.56637/

CA=(K2-X1)/DT

CB=(Y2-Y1)/0T

! CG=(2-21)/DT7

CaS=,¥B-XA)/DS

CBSL={YB-YR)/DS

TGs=(ZB-ZA)/0S

| CC=CA*CAS+CB*CBS+CG*CGS

i IF(A3S(CC).GT..597)G0U TO 294

. 20 SZ=({1-XA)*CAS+(Y1-VA)=CBS+(Z1-ZA)*CGS

THIS VERSION OF GGS WilL TEST Ifr CYLINDER SURFACE
PREVENTS "VISIBILITV" BETWEEN THE TWO SEGENTS.

[eXeEaXe]

IF(IRT.GT.0) GO 7O 331
CALL VISIBLE(XA.YA,X1,Y1,RADM,VIS)
TF(.NOT.VIS) GO TO 341

ALL VISIBLECXB.YB.%2,Y2,RADM,VIS) )
[F(.NOT.VIS) GO TO 381 ;
0 T0 384 :

381 INS=2*(INT/2)
IFCINS.LT.2)INS=2
IP=INS+1
DELT=DT/INS
T=.8
DSZ=CC*DELT
P11=(.4,.8)
P12=(.08..9)
F21+¢.8,.9)
222:(.8,.8)

AMS =AM*AM

SGN=-1.

D0 12€ IN=1,IP -5
C ORSERVATION POINT (X & Y VALUES)

TX=¥1 + T*CA

TY=¥1 + T*CB

X & Y VALUES OF THE TWO SQURCE POINTS ARE XA & YA AND XB & ¥B.

DETERMINE IF THE LINE BETWEEN OBSERVATION POINT AND "LEFT" END OF
THE SOURCE SEGMENT INTERSECTS THE CYLINDER.

OO0

CAth VISIBLE(XA,YA,.TX,TY,RADM,AVIS)

DETERMINE IF THE LINE BETWEEN OBSERVATION POINT AND "RIGHT" END
OF THE SOJRCE SEGMENT INTERSECTS THE CYLINDER.

CALL VISIBLE(XB,YB,TX,TY,RADM,BVIS)

ET11=9.

ET21=0.

£ET12=9.

£122=0.

IFLAVIS.OR.BVIS) GO TO 731

GO TJ 754
C OBSERVATION POINT CAN “SEE" AT LEAST ONE OF THE TWO SOURCE SEGMENT
C END FOINTS.

[aNgXy]

Fig, A-2, Subroutine GGSCYL




C

7l

ot
Fa?

L2) 437

ST - bS

Xyl h e 1*CA-XA-SZ*CAS

Vi Y1+T=CB-YA-SZ*CBS

(ULl TNIG-ZA-SZ*CGS
R‘-Xn."'Z*(‘IZ""'7Z""3

PAC =7

[FvR3.GT . AMS IFAC=(CATXXZ+CB*YYZ+CG*Z221/RS
EoAGTSY GO TO 792

a0y 783

S:PVATION FOINT CAN “SEL" END POINT A.

SO CIRVERG e 272
CAS RO GANAR T

s 1A R
tRIY=LIJATSGDS ¢ ZZ1*EJI*CGDS
tTi =TC*C-EJI*CGDS )Y + FAC™ERIY

ERCL: ZZ17E o1

bl =CC%ED) ¢ FACHER2I
t ByIS) GO TO 743

) 1 /58

UbST2VATLION POINT CAN “SEE" END POINT B.

/it

=
=

399

20 P THRS ¢ ZZ2%*2
B CAPC-GAM* 2

vB/R2

-222*cJ2
TLC*EJ2 + FAC*®ERI2
2=-EJB*SGRS3 ¢ ZZ2~EJ2*CGDS
£<CC*{-EJ2*IGDS) + FAC*ER22

2 P
o

cT1l + ETL2

'Lw £T21 + ET22
=3.+SGN

1#(1\.[0.1 LCORL OINJEG.IZIC=1.
ESD=CENPIGAMM(OT-T )

T1=C*(EGD~-1./EGD)Y/2.

[GD=CEXP(GAM*T)

TP =CEGD-1./E6GD) /2.
L2 11+FETI*C

12=212+871*C2

1 P21+ET2%C1
2224ET2*02

J'—'f.)fJ—‘""

~ETA®DELT/(3.*FP*SGDS*SGDT)
CST*P11

CST*P12

ZST*P21

[‘ST.P‘)'\

RETUIN

N.J-—WC:NI

Py o g e -t
lI ll Il uwon

202 SZ1l=.X%X1-XA)*CAS+(Y1-YA)I*CBS+(ZI-ZA)I*CGS
AHI=3URT((X1-XA~SZ1*CAS)I*%2+( Y] -YA-SZI*CBSI**2+(Z1-ZA-SZ1*CGS)**2)

322=SZ1+DT*CC

RH2=3URT({X2-XA~SZ2#CAS ) *2+(V2Z-YA-SZ2*CBS)I**24(22-ZA~SZ2%CL5)** )

DUD={RH1+RH2)/7,
[F(ODD.GT.2¢.*AM .AND. INT.GT.@)GO YO 28
IF:DID.LT.AM)IDSD=AM

CALI CGMM(.@.03,521,S22,0DD.CGDS,SGDS,SGDT,1.

2. ITAAM PIL . PI2 P21, F22)
RETURN

SH=5ARTLL . -CU*CH
CALI(LGSTUB-CBS* O/

Fig. A-2. (Continued)
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CBD=(CAS‘CG‘CGS'CA)/SS
;GD=\CBS'CA"CAS'CB)/SS
0\:((X-XA)‘CAD'(YZ~YA)'CBD'(ZI‘ZA)‘CGD
Dh=A35( Dk )

IFCRNC. LT . AM)ID} =AM

{(F=XA+82*CAS

VL= {A+SZ*CBS

22=LA+SZ*CGS

X 1=X1-DK*CAD

YPLl=y1-DK*CBD

Il l=7Z1-DK*CGD

s AT TBS*CGD-CGS*CBD
"BP=CGS*CAD-CAS*CED
CGP=CASYCBD-CBS*CAD
PIECAP*(XPl—KZ)*CBP*(VPl~VZ)#CGP*(ZP1-ZZ)
TI-pP1/SS

Sl=1i*cC-52

CALL GGHH(SI.?I‘DS,TI.Tl*DT.DK.CGDS.SGDS.SGDT.CC.ETA,GAM
2 PL1,P12.F21 P22

RETURN

IND

Fig. A~2, (Continued)
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fnclude the x and vy end-pointa of the source and observation segments,
as well a5 the radius of the cylinder in meters, The z values of the
#nd-points are not required since the axis of the cyllinder is assumed to
1li» on the z coordinate axis, as for the cylinder reflection subroutines
written by %kelman, VISIBLE will return the logic variable VIS which
will be "FALSE" if the surface of the cylinder intersects a straight
line drawn between the source point and the observation point, As with
033, line 16 will test if the source and observation segments are
parallel to each other with small displacement, If so GGSCYL calls

GGMM just as GGS does, If closed-form impedance calculations have been
selected by the User, which is done by setting variable INT equal to
zero, statements 23 thru 26 will determine if the cylinder surface
obstructs direct radiation between the two segments, If so, the use of
subroutine GGMM is not permitted, If the mutual impedance is o be
calculated via Simpson's rule, GGSCYL willl again determine if the
surface of the cylinder will interfere, At thils point, GGSCYL imple-
ments the concept introduced by Ekelman in the reflection subroutines

3G where the source segment current is considered to be concentrated at
points on either end of the source segment as shown in Fig, A-3, The
end points of the source segment are labeled A and B for convenience,
Subroutine 5GSCYL then determines the field which arrives at various
polnts 7 that lie on the oobservation segment from the two end points of
the source sersment, provided that the cylinder surface does not intersect
the line between the source segment end point, A or B, and the observa-
tion point, T. If it does, the fleld contribution from that end point

s zero, GG3CYL then integrates the r..eived field along the observation
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e e R -

8(x8,vs, z28)

SQURCE
SEGMENT

A
{XA,YA,ZA)

OBSERVATION
SEGMENT

T
(TX, Ty, T2)

Flg., A~3. Interaction between source and observation
segments in subroutine GGSCYL




segment just as the original GGS subroutine does to determine the
mutual impedance term for that palr of segments.

Subroutine VISIBLE, listed in Flz, A-4, is frequently called oy
other subroutines to determine if the surface of a circular cylinder of
radius RAD, whose axls 1s coincident with the 2z axls, intersects a
straight line drawn between points P and R, If the line does not
intersect the surface of the cylinder, the logical variable, VI3, is set
to a value of "TRUE", OSince the problem is independent of the value of
z, the cylinder is reduced to a circle in the z = z, plane, Because of
1ts repeated use by many other subroutine programs, VISIBLE was designed
to execute as fast as possible, The geometry of the problem is
illustrated in Fig, A=-5, First the distance of points P and R from the
axis of the cylinder, |5§| and |6§|, is determined and if they are less
than the radius, at least one of the points lie inside the cylinder,
This is possible for the monopole antenna model used, In that case, the

points can not "see" each other and the value of VIS is set to "WALSZ",

Next, the direction cosines of the line thru P andRare determined,
Point Q, which lies on line PR, i1s determined such that the length of
line IEEI represents the minimum distance between the cylinder axis and
the line PR, This requires that line 0Q be perpendicular to line 2R,
Using this fact and a theorem from analytical geometry [12] which
determines the distance between a plane (or line, skeitched as a dashed
line in Fiz, A-5), normal to a line (PR) that intersects the plane at a
point (P), and the origin, the distance 55 can be very quickly deter-
mined. This allows one to locate point Q, Using the relationship of a

richt triangle (/\OPQ) the minimum distance between the lire PR and tne
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OO oHO

(g}

[a X%

THIS 50" OUTINE DUTERMINES 1IF A STRAIGHT LINE DRAWN THRU POINTS
POARD KOWILL INTERSFLY THE CIRCLE WITH RADIUS A WHOSE CENTER IS
AT THE OJRIGIN. [F THC LINE PR DOES NOT INTERSECT THE CIRCLE,
THEN "VIn" = "TRoI".
t"CICAL VIS
ntAL _P2.LR2
P 2= o+ PyrpPY
LR2=-R«*RA + R\ *RY
RAD, =RAD*RAD - .B0@F1
TFL@®> LT, RAD2 .OR. LR2.LT.RAD2) GO TQ 9¢8
VIS=.TRUE.
COMPUTE JIFECTION COSINES TH2U P & R.
DL=GOFTLURM-PX ™% + (RY-PY %2
IFCD. [N @&, RTTURY
TIEOL P DL
L2ELRr=PY )DL
COMPLVE DI/ECTION LENCIH Of PERPENDICULAR LEG SP ON LINE °K.
(SIMI_AR TUO SZ CALCULATION IN SBR GGS.)
SP=-34{*Ci{ - PY*CZ
FIND LUCATION OF PERPENJICULAR INTERSECTION Q
WA= LI *SP + PY
TEST IF 0 LIES EETWEEN P ANJ R.
IF (<. 6T.Q¥ _AND. QX.GT.RX .OR.
1 RX.GT.QX AND. QX.GT.PX) GO TO 1p#
Y=CI*SP + PY
Jr PY.GT.QY _AND. QY.GT.RY .OR.
1 RLGT.QY LAND. QY.GT.PY) GO TO 108
CLOSCST POINT TO CYLINDERK DOES NOT LIE BETWEEN 2 AND Q.
RZTUAIN
195 S”2=52+SP
COMPUTE LENGTH OF FERPENDICULAR LINE FROM LINE 2R TO CYLINDER AXIS.
DP=5QRT(LP2-SP2)
DETECMINTG TF INTERSECTION WITH CYLINDER OCCURES,
FF(D? .02 RAD) V7™ S= FALSE.
RETURN
FULNT 15 INSIDE THL CYLINDER; QK IF PART OF "MONOPOLE" ANTENNA
HOWEVLR . POINT MUST NOT Bt "VISIBLE" fO JUTZIDE POINTS.
9de VG- FALSE.
REVU2N
LND

SUBRGCLTINE VISIEL (X FY RX,RY,RAD,VIS)

Fig., A~4, Subroutine VISIBLE
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Geometry concepts of subroutine VISIBLE
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cylinder axis is rapidly ccmputed and conpared to the radius of the
cylinder, Thus, if the distance |OQ| is less than the radius of the
cylinder, line PR intersects the cylinder, There is a sltuation, nowever,
where both points may be located on the same side of the cylinder, as

for points P' and R' shown in Fig, A-5, In this case, although line

P'R' intersects the cylinder, the cylinder surface does not intersect

the llne segment between points F'and R' and therefore, P' and R' can
still "see" each other, However for this case, point Q', which marks
where line P'Q' 1is closest to the origin, does not lie between the

points P' and R*, Thus, in the subroutine, if point Q' does not 1lie
between the iwo points, and both points are located outside the cylinder
(tested at the beginning of VISIBLE), then the two points will be visible
to each other, regardless of how close the line thru the two points is

to the cylinder axis., Thils is the purpose of the test at statement 29

of the subroutine,

Subroutine SG determines the delta impedance matrix terms due to
reflections from the surface of the cylinder, This subroutine, listed
in Fig, A-6, is the routine written by Ekelman except that a call to
subroutine VISIBLE is made at statement 159, If the surface of the
cylinder is determined to intersect a straight line between the source
segment end-point and the observation point, then there is no field
which arrives at the observation point due to reflections from the
cylinder surface,

Subroutine SGSURF, listed in Fig, A-7, is the subroutine which
calculates the delta impedance matrix terms due to boundary-layer

surface wave diffraction from the surface of the cylinder, The first
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SUBS IDTINE SGCOLT), TA,IBINM,INT ISC,I1,12,13,JA,JB.MD,N,ND NM,
2 AM . BM, L. CGD .MM, D EP2,EP3,ETA FHZ,GAM ,SGD . X.Y ., 7. 21 D.ZS . A B, .W.)
C * * sov 1S THE SAME AS SG EXCEPY THAT SUBROUTINE “VISIBLE" IS CALLED

C * = 'y rvcCLUDE COUPLING ANALYSIS BETWEEN TWO SEGMENT 20INTS HIDDEN
C * * FR/M tACH OTHER BY THE CYLINDER.
LOME. X 26,2+, 25 ,EGD,GD.CGDS,SGDS,SGDT,BA!
. COMPoEX P11,P12,P21,P22,011,012,Q21,Q22,EP2,EP,ETA,GAM,CP3
i CUMPLEX EPSILA,CWEA.BETA,ZARG
' COMPLEX P(2,2),Q(2,2),C6D0(1),SGD(1),C(ICI.ICI?,ZLDC1
COMPLEX EXI,EY1,£21,EX2,EY2,EZ2 ., ETPR,ETPP,PA,ERPR . ERPP ]
COMP_EX EX,EY,EZ,ERX.ERY,ERZ,ETL,ET2,EIPR,EIPP.C1,C2.CST
LOGICAL VIS
DIMENSION UNC2) , UB(2),VI!3)
LIMENGTION XCID).V(1),Z¢1), D), TATULY  IB( ) MO TINM, 4)
DIiMENSTON T1¢1),1201),13(1),JACEH) JBCY)Y HNDCLY, ISCH )
CATA ER,TP,U¥/8.854E-12,5.28318,1.,566E-6/
DATA FP/12.56637/
2 FORMAT(3X,*AM = * E14.3.3X,*DMAX = * E18.3,34,*DMIN = * E18.3"

C

C R KRR KA R R R AR KA AR AN RN ARANAN AR A NN ANNARNRR AN A AR Rwn S

c « » i

C *  WARNING: -~

c * SG IS THE ONLY SUBROUTINE WHERE THE VA_UE OF -
? C * THE CYLINDER RADIUS "A" IS IN UNITS Of WAVE -

c * LENGTHS, NO™ METERS -

C B "

C AN AN R RN R AR RN RRNNANKAN R RN R AR AN KA AR A AR AR R AR R kA N W

C

EP=EP3

ICC=/N*N+N)/2 :
DO 3: J=1.N !
00 1J I=1,N :

19 C(l1.2)=(g..8.)

11 CONTINUE
2S=(.F,.8)
iFICMM.LE.@.3G0 TO 12
OMEGA=TP*FHZ
EPSILA=CMPLX(ER,-CMM*1.E6/OMEGA
CWEA=(.@,1.)*CMEGA*EPSILA
BETA=OMEGA*SOURT(U@)I*CSQRT(EPSILA-EP)
ZARG=BETA*AM
CALL CBES{ZARG,By1)
75=BETA*BH1/CWEA

12 ZH=ZS/(TP*AM*GAM)

DMIN=1.E3#8
DMAX = .9
DO 23 J=1.NM
K=1A(J)
L=1B(J
D) =SARTE(XCKI=X(L I I *Z+ (YK=Y {L)II®*2+(Z(K)I-Z(L )**2)
TFeD0I). LT.DMIN)DMIN=D(J) :
IT(D(3).GT.DMAX IDMAX=D(J)
EGD=CEXP(GAM*D(J))
CLO(IIS(EGD+1. JEGD ) /2.

20 SGD(J)=(EGD-1./EGD)/2. ;
[F{DOMIN.LT.2.*AM)GG TO 25 f
IF(CABS(GAM*AM) . GT.F.26)G0 TO 25
[F(CAES(GAM*DMAX ) .GT.3.)50 TO 25
IF{AM.GT.¥.)G0 TO 3@

25 N=g :

URIT, 1 6.7 AM,DMAX.LMIN i
RETURN ;
38 U 2e¢ K=1,NM {
NV SND R %

Fig, A-6, Subroutine SG
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A9

Ab
59
cc

cc
cC

BE

KA:=TACK)
KE=181K)
Dk=D{ K>

CGO3=CLED(K)

SGDS =SGD(K)

N0 AT L=1,KM

NDL =NDOL )

LA=TA(L)

LB=IB(L)

DL=D(L)

SGDT=-5G0(L)

NIL=2

OO zg& I1=1,NDK
I=M{ (K, ,11)

MM= [-1)*N-(I%]-1)/2
Fl=1.
IF{k3.EQ.1
IF(1L3.EQ. 1
IS=1

GC TO 48
IF{KA EQ.I3(1)FI=-1,
[5=2

DC 289 JJd=1,NDL
J=MI(L . JJ)

MMM=MM+J

IF(1.6T.3)6G0 Tu 290
Fo=1.

IFIL3.EQ.12(d260 TO 46
IF(LB.EQ.I1(J)FI=~1,
JS§=1]

GO To 5#

IFCLA EQ.I2(J)))FJa-1,
JE=2

IFONIL.NE. !GO TO 168
NIL=1

(1360 TO 3¢
(INFI=-1.

2
1

GIN ZAUIVALENT TO 6GS

CA=Ix(LBY-X(LA))/DL
C3=1vy(LB,-Y{(LA))/DL
CG=¢Z(LB)~ZILAY)/DL
INS=2*{ INT/2)
ITFOINS.LT.2)INS=2
TP INS+]

Del T=0L/INS

T:7.

©
e e

nou oion

©
_
T N

)

3

L)

B2 )
’

)
)
}
)

PEENY

B.,
SGN=-1,

DO 188 IN=1,1P
XC=CX{LA)Y +T*Ca ) /WL
YC={¥({1LAY+T=CB ) /WL
ZC=Z0LAY+T*CG) WL
ET.=(h.,8.)
[ S S

DOOLE2 JEPry 2
ITCIrPLREQ. 2160 10 82
X3R = KA S /W

Fig. A-6. (Continued)
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C

YSR=/ 0y AN /WL
Z5R=ZikA WL
GO T 44

83 LI RN N L IR VI ¥
yaoP=y rB'/W
Sk Tie B SwWL
84 ¢ OINTINUE

VISIBILITY TEST BEVTWEEN SOURCE SEGMEMT END POINT AND CBSERVATION PT.
CALL VISIBLE(XSR,YSR,XC,YC,.A,VIS)
FOCNOT . VIS) GO 7O 192
RFHPTC FINDS THE REFL PT ON THE CYLINDER
CA_L RiINPTCCKSR.YSR,ZSR,XC.¥C,ZC .A.B,XK,YR,ZR, VR, UR. VI VIM)
GN™ FINDS THE FIELD AT THE REFL PT WITH K-SEG AS SOURCE
XRR= xR *W{
YPR=YR*WL
ZRR=7IR*WL
CALL GNNF(XCKA),Y(KA), Z(KA) X{KB),Y(KB),Z(KB),XRR, YRR,
2 ZRR,AM,DK,CGDS,SGDS,ETA,GAM,EX1 ,EY1,EZ1,EX2,EY2,E22.JEP)
NANDB FINDS THE NORMAL ,B1NORMAL ,AND TANGENT VECTORS AT ReFL PT
CALL NANDB(A,B,UN,UB,VR)
BEGIN TO FIND FIELD AT XC,YC,ZC DUE TO REFLECTEZD FIELD AT XR,¥YR,ZR
pr=T72/s2,
TFHI=TP
CTRI=UNCIYAEVIEI Y *UNI 2™V 2)
SYN=xSR-XR
SYN=fSR-VR
SZN=23R-~ZR
SHAG=SQRT(SAN®=SAXN+SYN*SYN+SZN*SZN)
YYN=3XN/SMAG
SYN=3YN/SMAG
SIN=SZIN/SMAG
TESTING FOR @&./8. IN ATAN2
TEMP=SXN*UB(1)+SYN*UB(2)
[f (TEMP.EQ.Z.) GO TO S
WR=ATANZ2(TEMP ,SZN:
G TO 6
5 Wit=¢ .8

6 SW=SIN(WR)

CW=COS{WR)
SST2=SWASW+CW*CW*CTHI*CTHI
RHO2=SMAG

CSVY=I0S(VR)

SHV=3IN(VR)
0D=SORT(B*B*CSV*CSV+ATA*SNV*SNV )}
RG=D2*DD*NDD/A/B

RHOI =SMAC*RG*CTHI/(RG*CTHI +2.*SMAG*SST2)
HIPRA=SIN(WR-PI/2.)1*yB( 1)
UIPRY=SIN(WR-PI/2.)*UB(2)
UiPRZ=COS(WR-P1/2.)
UIPPX=SYN*HIPRZ-SZN*UIPRY

rig., A-6, (Continued)
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res s gy T T

cc

UTPPYV«SZN*UIPP{-SXw "YU IPR.
VIPPZ-SXN™YIPK . &N, 1py
URPPX-ULIPRY*VY 31 - L vt iayr oy
URPPY=UIPR2*v]IIL ) - 2RANY D)
URPPZeUIPRX*VII2)-IIPRY* V) )
EX=E K1

Ev=£vl1

L2=E21

CO 1491 IMODE=1,2

EI"R-(CUIPRX*EX+UIPRY*CY ]I3RZ*EZ)

EIPP =l UIPBX*EXvUIPRY =" « 17 "F*E2)
PH=CSAP(CMPLX(A., , ~TP1*/ M /SORT({RHO1+VIM)*(RHO2+VIM})
ERPR--SQRT(RHOI *RHOZ ,  "H*T1FQ
ERPP=SART{RHOI*RHO2)* . .o 1/,

ERX=ERPR*UIPRX+ERPP*ii- 0

FRY=ERPR*UIPRY+ERPF ¥, - -¢

ERZ=ERPR*UIPRZ+ERPP*URDP L

CC DOT THZ FIELD WITH THE .->2G DIRECTION

ccC

191
192
cc

IFCIMODE.EQ.1)ETi=ER¥*CA+ERVY*CB+ERZ*CG+ET!
IFCIMODE .EQ.2YET2=ERX"CA+ERY*CB+ERZ*CG+ET2
Ex=E¥2

EY=EYv2

EZ=€22

CONTINUE

£C  ASSIGN INTEGRATION WEIGHTS AND MODAL CURRENT VALUES

cC

19:4°2

168

298

CW1=%.+SGN

[FCIN.EQ.1 .OR. IN.EQ.IPICWT=1.
EGD=CEXP(GAM*{DL~-T))
Cl=CWi*(EGD-1. EGD}/2.
EGD=UEXPLGAM™T !}
C2=CWT*(EGD-1./EGD) 2.
Pl1=P1L+ETI*CI
P1Z=P12+ET]I*C2Z
P21=P2:+ET2*C1
PL2=2.2+E72%02

TV LT

SLN=~-SGN
CET=-DELT/U3.%SGDT)
P11=CST*P {1

P12=CST*Pi2

P21=CST*P21

P22=CST*P22

Pl . 1y=P11

P, 2=P12

P¢2,..=P21

P2, 1=pP2e
CeI,))=CCI,J)ye Y*FJI*P(IS,JS)
[FTCILNELDIC(I. [Y=C/ 1,3}
CONTIHUE

RETURN

END

Fig, A~6, (Continued)
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SUBROUTINE SGSURF(ICJ,IA,IB,INM,INT,ISC,11,12,1{3,JA,J8,MD ,N.ND,
1 NM,AM,BM,C,.CGD,CMM,D,EP3 ETA,FHZ,GAM,SGD,X.V,Z,2LD,
2 2ZS,RADM,WL.NC,FAC)

COMPLEX CSGDS,EN1,EN2,EMAGS,EMAGL

CUMPLEX ZH,2ZS,EGD,CGDS,SGDS,SGDT,BA1

COMPLEX P11,P12,P21,P22,EP,ETA,GAM,EP3

COMPLEX EPSILA,CWEA,BETA,ZARG

COMPLEX P(2,2),CGD(1),8GD0(1),C(ICJI,ICJ),2LD(1)

COMPLEX ET1,ET2,C1,C2,CST

LOGICAL VIS

DIMENSION NC(1)

DIMENSION X{1),¥{1),2(1),D(1),TA(1),IB(1),MDIINM,4)

DIMENSION I1¢(1),12(1),1301),J3A(1},JB(1) ,NDC1),ISC(1)}

DATA EQ,TP,UQ/3.854E-12,6.28318,1.2566E~6/

FORMAT(3X,*AM = * E17.3.3X,*DMAX = * £18.3,3X,*DMIN = * £14.3)

EP=EP3

PC 11 J=1,N

DO 19 I=1,N

C(1.J:=(g.,d.)

CONTINUE

ZS=¢.@,.8)

IF{CMM.LE . #.)60 TO 12

OMEGA=TP*FHZ

EPSILA=CMPLX(EZ,-CMM*]1 E6/OMEGA}

CWEAS(.@,1.)*OMEGA*EPSILA

TR . T 1 2 T M i WP WY

BETA®OMEGA*SQRT(UZ I *CSQRT(EPSILA-EP) H
ZARG=BETA*AM

CALL CBES(ZARG,BS1)
ZS=BETA*BA1/CWEA
ZH=ZS/(TPYAM*GAM)

DMIN=1.E39

DMAX= .0

DO 24 J=1.NM

K=1A(J)

L=18(J)

DI =SARTCIX(KI=X{L I I**2+ (Y(KI-Y(LII**24(Z(K)=-Z(L))**2)
IF(D(J).LT.DMINIDMIN=D(J}
IF(D(J).GT.DMAX )DMAX=D(J)
EGD=CEXP(GAM*D(J))
CGD(J)=(EGD+1./EGD)/2.
SGD(J)={EGD-1./EGD)/2.
IF(DMIN.LT.2.*AM)GO TO 25
IF(CABS{GAM*AM) .GT.#.#6)G0 TO 25
IF(CABS(GAM™*DMAX).GT.3.)GO TO 25
IF(AM.GT.2.1G0 TO 3&

N=g

WRITE(6,2)AM,DHMAX,DMIN

RETURN

DO 238 K=1,NM

NDK=ND(K)

KA=TA(K)

KB=IB(K)

DK=D(K)

CGDS=CGD(K)

SGDS=SGD(K)

C3GDPS=-CGDS/SGDS

DO 228 L=1,NM

NDL=ND(L)

LA=TA(L)

LB=13(L)

Di=D(L)

Fig., A-7, Subroutine SGSURF
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SGDT=SGD(L)
NIL=Jd
DO 238 I1=1,NDK
[=MD(K,.I1)
MM=(T1-1)}*N-(1*I-1)/2
FI=1.
IF(K3.EQ.12(11})G0 TO 36
IF(K3.EQ.IMC 1) )FI=-1.
Is=1

. GO TO 48

: 36 IFiKAEQ.I3(INFI=-1,

: [5=2

49 DO 228 JJd=i,NDL
J=MD{L,33)
[21=12¢1)
123:=12(3)
IFONCEL21).EQ. 4 (OR. NC(12J) .EQ.A) GO TO 209
C IFCI.GT.J2)6G0 TO 2084

Fi=1.
IF(LB.EQ.12(J))GO TO 46
[F(LB.EQ.TI(IMFI=-1.

Ji=1
50 10 58

46 IF(LA.EQ.I3(J)Y)FJ=-1.
J5=2

50 IF(NIL.NE.Z)GO TO 168
NIL=1

cc

CC BEGIN ZQUIVALENT TO 6GS

cc

C COMPUTE DIRECTION COSINES OF EXPANSION MODE SEGMENT L
CA=(X(LB)-X{LA))/DL
CB=(Y(LB)-Y(LA}/OL
C3=(Z(LB)-Z(LA)}/DL

C COMPUTE DIRECTION COSINES OF TEST SEGMENT K
CAS=(X(KB)=~X{KA))}/DK

E CBS=(Y(KB)~Y(KA))/DK

, CCS=(Z(KB} - Z{FA))/DK

| INT1=INT

! TF( NC(LA).EQ.4 .AND. NC(KA).EQ.# ) INTL1=28~*INT
IF( NC(KB).EQ.d .AND. NC(LB).EQ.# ) INT1=2@*INT 4
1F{ NC{LAY.EQ.Z .AND.NC(<B).EQ.8 ) INT1=28*INT
IF( NC(KA).EQ.2 .AND. NC(LB).EQ.@ ) INT1=28*INT
INS=2*(INT1/2)
IFCINS.LT.2)INS=2
IP=1NS+1
DCLT=DL/INS
T=4.
Pl1=(@..0.
P12=4..0.
P21=:{0.,H.
prz=(1.,9.
P(1.1)=(8.
Pi1.2)=(8.
PL2,10=(E.
P(2,2)=(8.
SeN=-1.
D0 133 IN=1,1P
PX=t X(LA)-T*CA)
PY=(Y(LA)+T*CB}
PZ=/Z(LAY+T*CG)

C LOCATC >OURCE CURRENT AT CENTER OF SOURCE SEGMENT

PPA=X(KA) = DK*.S*CAS

PPY~r(KkA) + DK*.S5*CBS k

PrZ=Z(KA) + DK*.S*CCS ¢

b e T————————
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DETERMINE IF P CAN "SEE" PP. DO NOT COMPUTE SURFACE E-FIELD IF
THEY CAN "SEE* EACH OTHER.

c
C
C

CAlLL VISIBLE(PPX,PPY,PX,PY,RADM,VIS)
IF(.NOT.VIS) GO TO 261
EN1=CMPLX(Z..08.)
EN2=CMPLX(Z..0.)
GO TO 262

261 CUNTINUE

C
C COMPUTZ THE MAGNITUDE OF THE SURFACE FIELDS AT POINT P FROM
C CURRENTS AT POINT PP.
c

CALL ESURF(PPX,PPY,PPZ,PX,PY,PZ,RADM, RADM, ETA, GAM,

1 SPA,CPA,EMAGS,EMAGL,N)

IF (N.LE.Q®) GO TO 258

C
C COMPUTE SHORT PATH AND LONG PATH CONTRIBUTICONS FROM MODAL
C CURRENTS 1 AND 2 AT LEFT END OF THE TEST SEGMENT.
C
C DOT CURRENT DIRECTION WIVH SURFACE NORMAL AT SOURCE POINT PP,
C

DOT=ABS(CAS*COS(SPA)) + ABS(CBS*SIN(SPA))
C

EN1={EMAGS + EMAGL)*DOT*FAC*DK
Evlu(B. ,0.)

[F{NDK.NE. 1) Eiv2=EN]
262 CONTINUE
CPA=ATAN2(PY,PX)

c
C DOT THE TOTAL FIELD FOR THIS OBSERVATION POINT WITH THE L-SEGMENT
C DIRECTION.
C
ET1=ENI*(ABS{CA*COS(CPA))} + ABS(CB™*SIN(CPA}})
ET2=EN2*(ABS{CA™COS(CPA}) + ABS{(CB*SIN(CPA)))
cc

CC ASSIGN INTEGRATICN WEIGHTS AND MODAL CURRENT VALUES

cC
CWT=3.+SGN
IFCIN.EQ.]1 .OR. IN.EQ.IPICWT=1.
EGD=CEXP(GAM*{(DL-T))
Cl=CWT*(EGD-1./EGD)/2.
EGD=CEXP(GAM*T)
C2=CWT*(EGD-1./EGD)/2.
Pli=Pl1+ETI*C1
PLl2=P12+ET1*C2
P21=P21+ET2*C1
P22=P22+ET2%C2
TeT+DELT

198 Sih=-SGN

C5T=-DELT/(3.*SGDT?
P11=CST*P11
Pl2=0ST*Pi2
P21=CST*P21
P22=CST*P22
P(1.,1)=P11
PC1.2)=P12

168 C(1,1)=C(1,J)+FI*FI*P(1S,IS)
c IFLT.NE.JICEI, 1 )eCUT, )

298 CONTINUE
254 RETURN
£ND
Fig, A-7, (Continued)
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half of the subroutine is the same as for SGANTC or SG, However,

unlike SGANTC or SG, the current on the source segment is now considered
to be located at the center of the source segment, For a typical, aid-
antenna segment, the current distribution is made up of two modal

currents as described in Chapter IV, The magnitude of each modal

current, previously determined in the main calling program according to
the procedure detailed in Chapter IV, 1s passed to subroutine SGSURF
through variable FAC, Thus, the fields ET1l and ET2, arriving at the
various observation points, P, on the observation segment are due to
current moments with magnitudes equal to FAC, located at the center of
the source segment, generated by modal currents I and IT on that seg-
ment, Subroutine VISIBLE determines if the source segment midpoint,
PP, can be "seen" directly by the observation point P, The diffracted
field contribution is determined by a call to ESURF only if the two
points can not see each other, ESURF will compute the values for

EMAGS and EMAGL, EMAGS is the field which arrives at the observation

point due to the shortest, most direct path between the source and

observation segment, as shown in Fig, 4-3, EMAGL is the field which

JE PRy SRR

arrives at the observation point due to the most direct path between the
source and observation segment but traveling in the opposite direction
around the cylinder as Fig, 4-5 illustrates, Subroutine SGSURF will ‘
then add the two fields, EMAGS and EMAGL, as complex numbers, multiply

the result by the length of the segment, and take the necessary dot

rroducts as required by eqn, (3-1) to account for the orlentation of the ‘
source and observation segments with respect to the surface of the !

cylinder, 4
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Subroutine ESURF, listed in Fig, A-8, implements egn, (3-1). '
Based on the location of the source point, PP, and the observation
point, P, ZSURF determines the length of the short and long paths around
the cylinder by applying equs., A-l and A-2 (see Fig, A-9), The pitch
angle, §, is derived, based on eqn, A-3 and eqn. A-4 provided in
Fig, A-10. The subroutine computes the other parameters of eqn, (3-1)
in a straightforward manner, The hard and soft Fock functions, Fh
(¢, o y2) and F_ (¢, Yy yz), are evaluated by calling the function
subprograms FH and FS respectively.

The function subprograms FH and FS, are listed in Figs. A-11 and
A-12, To increase efficlency, the complex values listed in Table 3-1
for Th and T;' were transformed to rectangular notation and stored in
data arrays TN and TPN, The constant coefficlents for the hard Fock
function residue series (eans, 3-4 and 3-6) are stored in data array RK
in function subprogram FH while the soft Fock function residue series
(eqns, 3-5 and 3-7) are contained in data array RKK in function sub-
program F3, Data array KV in function subprogram FH stores the constant
coefficients for the hard Fock function small argument asymptotic
expression terms (eqns., 3-9 and 3-11) and the soft Fock function
asymptotic expression coefficients (eqns. 3-10 and 3-12) are stored in

data array KU in function subprogram FS,
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SUBROYTINE ESURF(PPX . FPY PPZ,Fx.>Y PZ A, B.ETA GAM SPA CPA,
1 EMAGS,EMAGL N
COMP_EX ETA,GAM EMAGS ,EMAGL ,EMAGL (EMAG2

LN BN I SN R SR R R T AR I A R I N

NOTE: A & B % TH!S SUBROUTINE
ARE IN UNITI QF MUTERS, NOT
AVELENGTHS.

R % % % X ® ®
* + & * & * %

A Kk K Pk & X A N ok Kk kW Rk kK N W

COMPLEX FH,FHVAL ¥S, -SVAL

COMPLEX J.G

REAL K

REAL M

DATA PI/3.14182265355898/.5/(&.,1.)/
GUK,Si=K*CEXP(-J¥K*S)/(J*PI*2 . *S*ETA)
IF(A.NE.B) GO TO 20}
SNMAG=SQRT(PPU*IEX4IPY*FPY )
SPA=ATANZ(PPY fPX)
CAMAG=SART(PX*2Y+PY*PY )
CPA=ATANIKPY P x)

DI=SNMAG-A

D2=CNMAG-A

IF(SNMAG.LE.A) D1=9,

TFOONMAGLLE LAY D2=6.
COMP TL !ENGTH OF SHORT PATH AROUND THE CYLINDER FROM NOPMAL
PROJECTIUN QF PCUINT P TO NO?MAL PRQJECTION OF PJINT PP ON THE
CYLI%DE? CURFACE.

S3=GURT(A*A*{SPA~CPA)**2, + (PPZ-FZ1**2.)

SIMI_AK_Y, COMPUTE THE LONGZR PATH BV GOING THE OTHER WAY AROUND
THE CYLINDER BETWEEN THE TWO POINTS.

SL=SART(A*A*(2.7P1 - ABS(SPA-CPA}:**2. + {(PP2-PZ)**2.)

COMPUTy THE PITCH OF TORSION ANGLES FOR BOTH SHORT AND LONG PATHS.

IHW(PR2Z-PZ.EQ.A.) GO TO 421
TSISsATANZ2(PPZ-PL ,A*{SPA-CPA))
QELTS={FI/2.) - ARS(PSIS)
SSIL =ATANZLPPZ-PZ A% {PT*2.) - ABS(SPA-CPA; )
WET =(P1/2.) - AES(PSIL)
3 T) 482
441 LECTLE PL/2.
DELT_=0ELTS
402 CONTINUE

COMPUTE THE MAGNITUTE OF THE NORMAL FIELD AT P FOR BOTH THE

SHORT AND LONG PATH ARGCUND THE CVYLINDER, STARTING WITH THI SHORT PATH

WWLTA=QELTS
5359
LA THMACTGAM)
1Y 1Y [PATH- LD
ot 1AL EQL 8 ) GO e 2l
S 11 32

32 fMaGl g @)

Fig, A-8, Subroutine ESURF
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EMAL2= @, ,d.)
GO T 343
392 RHOG=A/(SIN(CELTAI*SINCDELTA )}
RHUG=A/(SIN(LELTAI*SIN(DILTA )
M=(K*"RHOG/2,)¥**(1./3.)
»[=M*S/RHOG
P (XI.LE.2.) GO TQ 434
Y1i=k*D1/M
VZ=h*(2/M
TO=CISIDELTA)
fHVA =FH(XI,Y1,72)
FSVAL=FS{Al,Y1,YZ)
EMAGL=FHVAL - FHVAL*JI/(K*S) + FSVAL®M{J/{K*S})wr2
EMAGZ2={FSVAL = FhVAL Y*TO*TO*J/{K*S)
33 IF (IPATH EQ.1)Y GO 70O 281
EMAG _=ETA*ETA*(EMAGL + EMAG2)*G(K,S)
GO T 188
231 EMAGS=ETA*ETA*{EMAGL + EMAGZ)I*G(K,S)
S=SL
DELTA=DELTL
198 CONTINUE
RETURN

ERROR MESSAGES. N IS USED AS AN ABORT-COMMAND FLAG.

991 WRITE(6,601) A,B
GO TU 31y

992 WRITZ(6,682) SNMAG,A
GO N 910

923 WRIT: (b,603) CNMAG, A
GO 1D 214
944 WRITE{H,6P4) X1
914 N=-1
RETHRN
681 FORMATL(// . * C38% FATAL INPUT DATA ERROR*/
1 BX.*GEQMETRY ESQUATIONS IN THIS RQUTINE ARE VALID*/
2 BX.*ONLY FOR CIRCULAR ZVYLINDERS*/
T 5K YA = *ELTY 3,2X.*B = *,E18.3)
62 FORMAT(//,* $53F FATAL INPUT DATA ERROR=*/
1 BY *SOLRCE POINT IS INSIDE THE CYLINDERK/
2 BN YSHMAG = YLEVZ.3,2X %A = * E185.3)
687 FORMATL /7 % $3TS FATAL INPUT DATA ERROR*/
I 64, ORSERVATION POINRT IS INSIDE THE CYLINDER*/
2 64 *CNMAG = * E1@.3.72X,*A = * 19,3}
64 FORMAT(//.,* $38% FATAL INPUT DATA ERROR*/
1 8xXx,*¥X1 18 LESS THAN OR EQUAL TQ J.98*/
2 6XK,*XD = *ELZ.3)
END
COMFLEX FUNCTIGN FS(XI,Y!,¥2)
COMPUTES THE "SOFT"-TYPE FOCK FUNCTION
COMFCUEX J.TN(12 . ,RFK(2),4U{3),KUPL3),SUIM
COMPLEY 1), UP
IATS I/, 1./
CATA REKK/(2.505360827%.2.006628279),43.759942412,3.759942412/
DATA TN/(1.169355,~2.824363),(2.243975%5,~3.543263),
N (2.76023,~4.78094%),¢3.393305.-5.877377),(1.372865,~-6.879R18),
2 (4.9511325,-7.313844) (5. Q8281 ,~8.5950681,(5.59425,-9.533641),
3 (5.965, 10 331683) (6.4144,-11.11i0867)/
DATA KU/ (. 6260570687 ..6266570687 ), (8., .41 66586607,
1 (,39/915167. .817915167/
CATA kUP/(-.9399850#3,-.939985603 ', (8.,1.25",
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OO0

o000

[ Nert

I 1.4406182514,-.4496182514 )/
IF {¥1.6T.8.6) GO TO 148

COMF. "C L' AND UP ISIWs THE IMALL ARGUMENT ASYMPTOUTIC EXPRISSIONS.

Us1. = KUCLI*AT=%] .5 » Ki(o)wXine] o KU 2)ey]nwyg 5
UP=KJPUII*SQRT i X1) + LUP(2)%X[*Xi - kUP 3 %X [**3 .5
Gu 0 11a

CGMPUTE U AND UF JSING THE CONVERGING RESIDUE STRIES IF X1
GPEATIP THAMN @.6

1224 SUM={(2.,0.)
DO 249 N=1,14
2B SUM=CEXPU-~I*X1I*TN(N)) + SUM
U=RIK 1 I*XT*>] Bw*guMm
SUM-UE. 8.
DO 219 N=1,148
ZHH SUM= UL XTI*TNIN)I>2 . /3. ) » CEYPU~JI*XT*THNIN)) + SUM
SP=RWKC2I%SORTIXNT y*SUM

COM> Ve FSOXI,Y1,Y2) AND RETURN
TIg FS=t v Jw 5% p - PoS*U /AT I%(yLInY]+V22yD)
TURN
N

Mo

Is




(PX,Py,Pz )

PP ( PPx,PPy,PPz)
__.dl

(A-1) 8s = V[;? (sPa - CPA)Z + (zs - zc)

(A-2) SL = Vf;Z (277 -|spA - cPa])? + (2, - 2

vwhere

o PLANE

2

3PA = arctan

TPA = arctan

PPV

=)

PPX

PY
PX

)

)2

c

Tix, A-9, Path length calculations for subroutine ESURF




(a-1)

(a-2)

(A-3)

SURFACE OF
CYLINDER

Z -2
_ |2 - 24
¥ = arctan SR T Ta|

= arctan lzz _ zil
“¢ * a(27-{SPA - CPA])

= Z
65,45 2 - g%,x?

Fig. A-10, Pitch angle calculatlons
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COMPULE X FUNCTTON ES5¢XTE YT, ¥V
COMPIEYE S THE “5o0 1" -1Vt TOoCh PUNCTION
ContPE Y T NS VT RECS ) B3y LB ), SUM
CUMALTX U, up
DATN I/, 1.0/
NATY REK/ZC2. 7628275, 2506023775y ,(3.75004°412,7.765G542417)/
U TR LB =2 GOy (2 AT -0 A6

i (L7628 =1 780945 ) (2.349334, L. 87720377 05000 Qi -0 7958,
S S R I VI 0 B AT S O SIS 4 16 I PN PRV IR AL SR HE BRIV VY| 0 S YRR IO PR AR B N
R I L I e R I RIR e BN W TR b I R R B B 5 WA TSI

ks LY/ (.62606570007,.6266070687 ), (0., 41606 60570,
L W TIINI67, - 0979105167/

DATA KUP/Z(-.239980007,-.93098606473 ) (., 1.0,
I o6 1I82581d - ddvelinehlay/

IF (31T, G61.0.0) GO TO 199

COUIP AT U AND UP USING THE SMALL ARGUMENT ASYHPTGTIr Ty "PoCIOpS,

Uiy = RUCEYSYIR*L G+ RI2)*X %53, ¢ LB03)y*In*i.H
UP=LUPCII*SARTORT ) + HUPC2)*XT*N] + [UF(3)*1**3. 0
GO TO 119

COMPUTE U AND UP USING THE CONVERGING RESIPUE SERIES IF X1 IS
GREAIER TPAN 0.6

1O 0=, )
DO 60 N1 01
2 SR PO ANTRTHON Y ) + SUM
R E Oy TR * L LY S UM
SUA=05, 4f. )
PN jH=1,16
20 SURCT=J XTRTNENI*2 . /3.) * CEXP{-I*XI*TMN(N}) + SUM
(£} U AR R A © [ R B A

COMPUTE FSOXIL,Y1,VZ) AHD RETURN

10 FS=U + J*. G*(UP - 1.57U/XI)=(¥1*¥1+Y2*Y2)
RETURN
EWND

Fig, A-11, Function Subprogram FS
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LOMEEFYC FUNCT !N FHO e ¢ v7

=

E C COMPLTEL THE "HARU™- TYPE fOLK FENCTION
~ COMPLCY 0, TENVIF ) RKIZY KVE D, 20103 SiiM
COMPLEX V., VI

} DATA TPN/(.5089395,-.88.2"38; {1.6740995,-2.813415).
: 1 (2.41005,-4.174329),0(. &81cv5,-5.337583),(3.66609,-6.384495),
2 (4.244245,-7.351248),¢A . JRT.2% -3,257942),15.26385,-9.117256),

,.....,...-.
L.:"—"

-

- 3 (5.73765,-9.937728),4t ivd.~1@4.725551 ./

- DATA KV/(.3133235343,.3,...85043),{0.,.116663566/),
g 1 (.2171351642,.8171351542).

; DATA kV1/(.6265570687. 5 .6,376687),(F.,.5833333233), ‘
L 1 (. 137A812338,-.137881% =0/

- DATA J/¢@.,1.1/

DATA RK/(1.253314137,~1.7F35513137),(2.506628275,2.545628275)/ -
IF ({1.6T.#.6) GC TO 108

AR
GOy

COMPUTE V AND V1 USING THE -txc! APGUMENT ASYMPIOTIC EYPRESSIONS.

c .-
Val. = KVOLI*XI*®1.6 & Ky12.%x1%¥3. + KMI{2)ex;%%4.5
Viet!. o+ KVI(I}Y/T*%1 B - syl(2)%K[**3. - KVI(31%XI**4. 5 .
GO TO 118 }
c P
C COMPUTE V AND V1 U3ING THE CONVERGING RESIDUE SEIES IF XI IS Lo
€ GREATER THAN 9.6
s

180 SUM=(&, ,0.)
DN 238 N=1,18

280 SUM=CEXP{~-J*XT*TPN(N))/T2>N(N) + SUM
V=RK:I1)*SQRT{( X! )*SUM
SUM=(g. . 8.)
DO 218 N=1,18

218 SUM=CEXP{-J*XI*TPNIN:) + SUM
VI=RK{2)*XI*> . 5*%5LIM

COMPUTE FHIRTI,V1,¥2) AdD RETURN.

OO0

112 FH=V - J*VI®YL*Y: + Y2%y2)1/(4.%X1)
RETURN
END

£ Fig. A-12, TFunction Subprogram FH
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